Lazy frames: quickly extract subsets from large text files

Bryan W. Lewis
blewis@illposed.net

October 25, 2011

1 Introduction

I've been working with some moderately-sized text files recently. The files are each over two giga-
bytes with about 20 million rows, with columns separated by commas (CSV) or tabs. My computer
has plenty of memory for R to load each file, but it takes a while and I’'m impatient.

Now, I don’t really need the entire data set in memory for my work. I just need to filter the
data a bit and then sample from the rows. I think that this situation is typical enough—wanting
fast access to subsets of large text files—that I wrote this package for it.

The lazy.frame package lets me quickly and efficiently work with subsets from a text file without
loading the entire file into memory. A lazy.frame is a data frame promise. It presents a text file
as a kind of simple data frame, without first loading the file into memory. Lazy frames load data
from their backing files on demand. They are essentially wrappers for the read.table function
with a few extra convenience functions. I probably should have called this “promise.frame,” but I
liked the sound of “lazy.frame” better.

There are several compelling R packages for working directly with file-backed data: The LaF
package is quite similar to lazy.frames, reading data from CSV files on demand into data frames.
But LaF is not cross-platform, has more limited file handling, differs from the read.table syntax,
and most importantly lacks the filtering functions available in lazy frames. The bigmemory package
by Emerson and Kane provides a memory mapped matrix object, free from R indexing constraints,
and a comprehensive suite of fast analysis functions. The nicely simple and powerful (a superb
combination!) mmap package by Jeff Ryan defines a data frame-like memory mapped object. And
the venerable ff package by Adler, Oehlschlégel, et. al. defines a variety of memory mapped data
frame-like objects and functions. All of these packages have really interesting features. Most of
them are designed to facilitate working with objects larger than the physical RAM available on a
computer.

But recall, my data sets easily fit into the RAM on my computer (RAM is really cheap)! My

http://cran.r-project.org/web/packages/LaF/index.html
http://cran.r-project.org/web/packages/bigmemory/index.html
http://cran.r-project.org/web/packages/mmap/index.html
http://cran.r-project.org/web/packages/ff/index.html

The lazy.frame Package

main irritation is the bottleneck incurred by parsing the entire data set, which isn’t really avoided
by the above packages (although the packages do include methods to help expedite loading data
from text files).

A notable alternate method for efficiently processing very large text files splits the files manually
into a set of files each containing a subset of rows of the original. Lazy frames provide the same
capability, with much less work on the part of the user (no manual file processing).

Of course, lazy frames aren’t a panacea and have limitations discussed below. The benefit of
using lazy frames diminishes as the size of the extracted subsets grow. Thus, lazy frames are very
good for extracting relatively small subsets. For really large data sets, or for more sophisticated
operations involving all the data, bigmemory is a better option. Lazy frames work well with text
files with between roughly a million and a hundred million or so rows.

2 Using Lazy Frames

Lazy frames are good for very efficiently extracting small subsets from large delimited text files.
They are bad for use by computations that need all of the data—for that either pay the price up
frontand load the data, or use one of the alternate file-backed methods discussed in the Introduction.

I can think of at least two applications that lazy frames are good for:

1. Quickly filtering a raw data set to get to a subset of interest (discarding the rest).

2. Developing models for imbalanced data sets, which involves filtering and specialized boot-
strapping.

The second application is one approach to modeling an outcome that occurs only rarely in the
data. Such problems arise in fraud detection and many other areas. One approach to constructing
models of rare outcomes is to use a bootstrap technique that selects approximately equal resampled
population sizes from the rare cases and majority cases.

There is another interesting aspect of the second application related to parallel computation.
If the bootstrapped function is computationally expensive, lazy frames can help overlay 1/O and
computation—that is, keeping one process busy with selecting the next resampled subset, while
another process evaluates the function on the current subset.

2.1 Overview

A lazy frame is basically a data frame promise that loads data on demand. Lazy frames are created
with the lazy.frame function. Its options are mostly equivalent to the options for read.table-lazy
frames directly use read.table to parse their backing data files.

The lazy.frame Package

The example shown in Listing 1 writes the iris data set to a CSV file and creates a lazy frame
from that file. Any standard column delimiter may be used in place of comma. Lazy frames support
all of the read.table options. In particular, the example uses header=TRUE, indicating that the
first data file row contains column names, and row.names=1, indicating that the first column in the
data file contains row names.

Note that I'll use the variable x defined in Listing 1 in subsequent examples.

Listing 1: Basic use.

> library("lazy.frame")
> data(iris)
> f = tempfile()
> write.table(iris, file=f, sep=",")
> x = lazy.frame(f, header=TRUE, row.names=1)
> head(x)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 SRb5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
> dim(x)
[1] 150 5

Subsets of lazy frames are normal data frames. Indexing works mostly like normal data frames
with a few exceptions:

e The $ operator is not supported for indexing columns.

o Leaving the row index blank to select all rows is not supported in the same way as with normal
data frames—instead this returns a lazy frame again. If you really want all the rows, explicitly
specify a start and end index (but this kind of defeats the purpose of using lazy frames!).

Listing 2 shows some examples of extracting subsets from the variable x defined in Listing 1.

The lazy.frame Package

Listing 2: Indexing

> s = sample(nrow(x),5,replace=TRUE)

> x[s,]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
83 5.8 2.7 3.9 1.2 versicolor
89 5.6 3.0 4.1 1.3 versicolor
147 6.3 2.5 5.0 1.9 virginica
123 T.7 2.8 6.7 2.0 virginica
60 5.2 2.7 3.9 1.4 versicolor

> x[1:3,c("Petal.Length","Petal.Width")]
Petal.Length Petal.Width

1 1.4 0.2
2 1.4 0.2
3 1.3 0.2

2.2 Special comparison operations

Lazy frames provide a few very basic comparison operations that work on single columns. The
operations are useful for basic data filtering. These operations only apply to one column at a time
and are limited to: < > < > = , and == for numeric, integer, and character
values. Data within text files is naturally represented as character data. The data type of the
comparison value determines how data from the text file is interpreted for the purpose of the
comparison. The value to be compared against must be one of R’s scalar integer, numeric, or

character types.

Recall that comparisons on data frame columns return a vector of Boolean values with the result
of the comparison for each row. Unlike data frames, lazy frames return a set of numeric row indices
for which the comparisons are true (or NULL if all rows evaluated false), just like the which command.

Listing 3 shows an example that picks out rows of the iris data set with Sepal.length < 4.5.

The lazy.frame Package

Listing 3: Indexing

> x[x[,"Sepal.Length"] < 4.5, 1]
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

9 4.4 2.9 1.4 0.2 setosa
14 4.3 3.0 1.1 0.1 setosa
39 4.4 3.0 1.3 0.2 setosa
43 4.4 3.2 1.3 0.2 setosa

2.3 Advanced options

Lazy frame’s comparison operations use thread-level parallelism on POSIX systems. Parallel file
access is only effective when there is enough system RAM to cache a large portion of the data file.
Note, in particular, that parallel operations can degrade performance for large data files.

The number of threads used for comparison operations may be examined or set with the standard
R options interface for lazy.frame.threads.

3 Quirks and Limitations

Lazy frames are simple-minded cousins of data frames. They act like data frames in many ways,
but also exhibit significant deviations from data frame behavior summarized here.

o Lazy frames are read only.
o Column name indexing with $ is not supported.

o Comparison operations that involve all rows are limited to basic comparisons for a single
column only, and only for numeric, integer, and character values.

o Comparison operations return a set of indices like which instead of a vector of Boolean values.
(This is for efficiency’s sake—an entire column could be much much larger than the set of
matching row numbers).

« Row names are supported, but they must be from a column in the data file (they can’t be
independently specified).

o Factor variables are supported-but for them to make sense, the levels must be manually
specified using the column_attr function.

o Lazy frames shouldn’t be used directly by functions that expect data frames—use subsets of
lazy frames instead.

The lazy.frame Package

4 Examples

I present a few examples that compare indexing operations on lazy frames with indexing operations
on data frames read in by read.table. The machines used in each example are described below.
In order to minimize disk caching effects between tests, the command

echo 3 > /proc/sys/vm/drop_caches

(wiping clean the Linux disk memory cache) was issued just before each test.

The first example presents a really optimal case for using lazy frames. The second example shows
performance for a very large well-known example.

4.1 A medium-sized example

The example used a CSV file with about 18 million rows and 27 columns. Two of the columns were
character, three double precision numeric, and the remaining integer valued.

The experiments in this section were conducted on a fairly old and slow 2 GHz, four CPU core
AMD Opetron computer with 12GB of DDR-2 RAM running Ubuntu 9.10 GNU/Linux and R
version 2.12.1. The data files resided on a Fusion-io ioXtreme solid state disk rated at 700 MB/s
data read rate and 80 us read latency in the first set of tests.

I used read.table with and without defining column classes to read the data into a data frame
from an uncompressed file. As expected, specifying column classes in read.table reduced the load
time by more than 20% in this example, and greatly reduced the maximum memory consumption
during loading from almost 8 GB to under 5 GB (note that the data set itself only requires about
2 GB to store in R). Without column classes, it took over 11 minutes to load the data in. Specifying
column classes reduced that to about 9 minutes.

Once loaded, I extracted a subset of about 95 thousand rows in which the 20th column had
values greater than zero. It took about 27 seconds to extract the subset.

Lazy frame took only about 4 seconds to “load” the same file, and about 23 seconds to extract
the same row subset using 3 threads. With two threads, the example took about 30 seconds, and
with only one just under 50 seconds. Lazy frame outperformed native data frame indexing
in this example.

The maximum memory used by the R session using lazy frames was limited to about the 18 MB
memory required to hold the subset, about 300 times less than the maximum memory required

when reading the whole data set in with read.table. Indeed, the lazy frame example runs fine on
a machine with 1 GB RAM or less.

The key to lazy frame’s performance in this example is that we extract a small subset from a

The lazy.frame Package

large table from a fast storage medium. Lazy frame’s performance relative to other methods will
degrade as the size of the extracted subset grows.

Listing 4: Extract a subset from a lazy frame.

library("lazy.frame")

tl = proc.time()

x = lazy.frame(file="test.csv")
print(proc.time() - t1)

user system elapsed

2.34 2.05 4.39

V V V V

> print(gc())

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 140517 7.6 350000 18.7 350000 18.7
Vcells 130910 1.0 786432 6.0 531925 4.1

> print(dim(x))
[1] 17826159 27

> options(lazy.frame.threads=3)
> tl = proc.time()

>y = x[x[,20]>0,]

> print(proc.time() - t1)

user system elapsed

39.680 13.590 23.428

> print(dim(y))
[1] 95166 27

The lazy.frame Package

Listing 5: Extract a subset from a data frame loaded with read.table.

> tl = proc.time()
> x read.table(file="test.csv" ,header=FALSE,sep=",",stringsAsFactors=FALSE)
> print(proc.time() - t1)
user system elapsed
648.380 33.350 682.699

> print(gc())

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 138089 7.4 667722 35.7 380666 20.4
Vcells 285413776 2177.6 832606162 6352.3 1034548528 7893.0

> print(dim(x))
[1] 17826159 27

> t1 = proc.time()

>y x[x[,20]>0,]

> print(proc.time() - t1)
user system elapsed
27.87 2.41 30.31

> print(dim(y))
[1] 95166 27

The lazy.frame Package

Listing 6: Extract a subset from a data frame loaded with read.table with defined column classes.

> cc = c("numeric","integer","integer","integer","integer",
"integer","integer","integer","integer",'"character",
"character","integer", "integer","integer", "integer",
"integer","integer",'"integer","integer","integer",
"integer","integer","integer", "numeric","integer",
"numeric","integer")

proc.time()

read.table(file="test.csv" ,header=FALSE,sep=",",stringsAsFactors=FALSE,
colClasses=cc)

> print(proc.time() - t1)
user system elapsed

443.290 82.780 526.141

> t1
> X

> print(gc())

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 138519 7.4 350000 18.7 350000 18.7
Vcells 285348278 2177.1 649037152 4951.8 641872298 4897.1

> print(dim(x))
[1] 17826159 27

> tl = proc.time()

>y x[x[,20]>0,]

> print(proc.time() - t1)
user system elapsed

28.410 2.180 30.593

> print(dim(y))
[1] 95166 27

The lazy.frame Package

4.2 A larger example

This example uses the concatenated airline data set from http://stat-computing.org/dataexpo,/2009/.
The data consists of flight arrival and departure details for all commercial flights within the USA,

from October 1987 to April 2008. It’s a relatively large example with about 120 million rows and

29 columns taking up about 12 GB (uncompressed).

Tests were performed on an Amazon high-memory EC2 instance with 32 GB RAM and four Intel
Xeon CPU X5550 cores operating at 2.67 GHz, running Ubuntu GNU/Linux 11.04 and R version
2.12.1. Except where indicated, the raw data file was located in a RAM-based tmpfs file system to
completely eliminate disk performance artefacts.

Despite plenty of available memory, I was unable to load the data set directly into R, which
always failed after about 16 minutes with the error:

Listing 7: Extract a subset from a data frame loaded with read.table with defined column classes.

Error in scan(file, what, nmax, sep, dec, quote, skip, nlines, na.strings,
could not allocate memory (2048 Mb) in C function 'R_AllocStringBuffer'

The same error occurred after moving the uncompressed raw data file to disk in order to free up a
maximum amount of RAM (nearly 32 GB).

I took the advice of the American Statistical Association in the Data Expo challenge and imported
the data into sqlite to be read by R using the RSQLite package. This process is documented here:
http://stat-computing.org/dataexpo/2009/sqlite.html. The raw CSV file was loaded from RAM to
eliminate disk I/O artefacts.

The sqlite3 data load time without creating indices took about 20 minutes. Once created, it took
about 150 seconds to extract the subset corresponding to the year 2000 into a data frame shown in
the example below (about 5 1/2 million rows).

10

http://stat-computing.org/dataexpo/2009/
http://stat-computing.org/dataexpo/2009/sqlite.html

The lazy.frame Package

Listing 8: Setup the sqlite database.

cat << EOF > sqlite.script
create table ontime (
Year int,
Month int,
DayofMonth int,
DayOfWeek int,
DepTime int,
CRSDepTime int,
ArrTime int,
CRSArrTime int,
UniqueCarrier varchar(b),
FlightNum int,
TailNum varchar(8),
ActualElapsedTime int,
CRSElapsedTime int,
AirTime int,
ArrDelay int,
DepDelay int,
Origin varchar(3),
Dest varchar(3),
Distance int,
Taxiln int,
TaxiOut int,
Cancelled int,
CancellationCode varchar (1),
Diverted varchar(1),
CarrierDelay int,
WeatherDelay int,
NASDelay int,
SecurityDelay int,
LateAircraftDelay int
)3
.8eparator ,
.import airline.csv ontime
EOF

time sqlite3 ontime.sqlite3 < sqlite.script
real 19m53.965s

user 17m55.440s

sys 1m30.310s

11

The lazy.frame Package

Listing 9: Extract a subset data frame from an sqlite database without indexing.

> library("RSQLite")
Loading required package: RSQLite
Loading required package: DBI
> ontime <- dbConnect("SQLite", dbname = "ontime.sqlite3")
> tl=proc.time();
> x = dbGetQuery(ontime, "select * from ontime where Year=2000");
> print(proc.time()-t1)
user system elapsed
68.890 22.280 150.336
> print(dim(x))
[1] 5683047 29

Sqlite indexing can greatly improve performance at the expense of slower initial load times. I
added an index on a single column "Year" for comparison as shown below. The sqlite3 data load
time including creation of a single index on the year column took about 26 minutes.

Listing 10: Creating the sqlite database with a single index.

echo "create index year on ontime(year);" >> sqlite.script
time sqlite3 ontime_indexed.sqlite3 < sqlite.script

real 25m49.930s

user 23m39.590s

sys 2m59.050s

Once indexed, however, it’s much faster to extract data from the sqlite database in R:

Listing 11: Extracting a data frame from an indexed sqlite database.

> library("RSQLite")

Loading required package: RSQLite

Loading required package: DBI

> ontime <- dbConnect("SQLite", dbname = "ontime_indexed.sqlite3")

> tl=proc.time(Q);

> x = dbGetQuery(ontime, "select * from ontime where Year=2000");
user system elapsed
31.920 1.640 33.575

> print(dim(x))

[1] 5683047 29

Lazy frames reduced the initial “load” time to about 7 seconds, and extract data more quickly
than non-indexed sqlite databases, but generally quite a bit more slowly than indexed databases.
It took about 120 seconds to extract the data frame corresponding to rows with year equal to 2000
(half a minute faster than sqlite without indexing, but almost four times slower than sqlite with
indexing).

12

The lazy.frame Package

Listing 12: Extract a subset from a lazy frame.

require(lazy.frame)

tl = proc.time()

x = lazy.frame("airlines.csv",header=TRUE)
print (proc.time()-t1)

user system elapsed

2.170 4.500 6.677

V V V V

options(lazy.frame.ncpu=4)
t2 = proc.time()
z=x[x[,1]==2000L,]

print (proc.time()-t1)
user system elapsed
163.370 90.720 119.208

V V V V

> print(dim(z))
[1] 5683047 29

13

	Introduction
	Using Lazy Frames
	Overview
	Special comparison operations
	Advanced options

	Quirks and Limitations
	Examples
	A medium-sized example
	A larger example

