# Assemble results
TIN_profiler = function(dataset)
{
x %>%
full_join(
dataset$mobster_analysis$output %>% dplyr::select(id, tumour.cluster),
by = c("id")
) %>%
full_join(
dataset$BMix_analysis$output %>% dplyr::select(id, normal.cluster),
by = c("id")
)
dataset$joint = dataset$joint %>%
full_join(
dataset$mobster_analysis$output %>% dplyr::select(id, tumour.cluster),
by = c("id")
) %>%
full_join(
dataset$BMix_analysis$output %>% dplyr::select(id, normal.cluster),
by = c("id")
)
is_cl_tum = dataset$joint$tumour.cluster %in% dataset$mobster_analysis$clonal_cluster
is_cl_nor = dataset$joint$normal.cluster %in% dataset$BMix_analysis$clonal_cluster
dataset$joint$is_clonal = is_cl_tum & is_cl_nor
dataset$joint = dataset$joint %>%
dplyr::select(
chr,
from,
to,
ref,
alt,
id,
ends_with('count'),
ends_with('tumour'),
ends_with('normal'),
ends_with('cluster'),
used,
is_clonal
)
dataset
}
# TIT = dataset$mobster_analysis$estimated_purity / 2
# TIN = dataset$$estimated_purity / 2
# ggplot(
# data_table %>% mutate(is_clonal = ifelse(is_clonal, 'Clonal', 'Subclonal')),
# aes(x = VAF.germline, y = VAF.tumour, color = is_clonal)) +
# geom_point(
# size = .3,
# alpha = 0.1,
# color = 'black'
# ) +
# # scale_x_continuous(limits=c(0, 1)) +
# facet_zoom(xlim = c(0, 0.05)) +
# ylim(0, 1) +
# mobster:::my_ggplot_theme()
#
# figure = ggplot(data_table %>% mutate(is_clonal = ifelse(is_clonal, 'Clonal', 'Subclonal or CNA')),
# aes(x = VAF.normal, y = VAF.tumour, color = is_clonal)) +
# geom_point(
# data = dataset$joint,
# size = .3,
# alpha = 0.1,
# color = 'black'
# ) +
# geom_point(size = .7, alpha = .3) +
# geom_abline(linetype = 'dashed',
# color = 'red',
# size = .3) +
# geom_hline(
# yintercept = TIT,
# linetype = 'dashed',
# color = 'black',
# size = .3
# ) +
# geom_vline(
# xintercept = TIN,
# linetype = 'dashed',
# color = 'black',
# size = .3
# ) +
# geom_point(
# data = data.frame(x = TIN, y = TIT),
# aes(x, y),
# color = 'black',
# fill = 'white',
# size = 3,
# shape = 21
# ) +
# xlim(0, 1) +
# ylim(0, 1) +
# guides(color = guide_legend('')) +
# mobster:::my_ggplot_theme() +
# labs(
# title = paste0("Contamination"),
# x = 'VAF germline',
# y = "VAF tumour"
# # subtitle = paste0(
# # "Cancer cells in normal sample: ",
# # round(TIN * 200, 3),
# # '%\n',
# # "Cancer cells in tumour sample: ",
# # round(TIT * 200, 3),
# # '%'
# # )
# # caption = paste0('S = ', S, '(', percentage * 100, '%)')
# ) +
# scale_color_manual(values = c(`Clonal` = 'cyan4', `Subclonal or CNA` = 'black'))
#
# # geom_mark_ellipse(aes(fill = is_clonal, label = is_clonal))
#
#
# data_table = data_table %>%
# mutate(
# group = paste(tumour.cluster, '~', germline.cluster)
# )
#
# group_labels = data_table$group %>% unique
# group_labels_colors = pio:::nmfy(group_labels, rep("black", length(group_labels)))
#
# for(cl in MOBSTER_analysis_results$clonal_cluster)
# group_labels_colors[grepl(group_labels, pattern = cl)] = 'cyan4'
#
#
# f2 = ggplot(data_table,
# aes(
# x = VAF.germline,
# y = VAF.tumour,
# shape = group,
# color = group
# )) +
# # geom_point(
# # data = joint,
# # aes(x = VAF.germline,
# # y = VAF.tumour),
# # size = .3,
# # alpha = 0.1,
# # color = 'black',
# # inherit.aes = FALSE
# #
# # ) +
# # geom_density_2d(data = data_table %>% filter(VAF.germline > 0), size = .1) +
# geom_point(size = 2, alpha = .7) +
# geom_abline(linetype = 'dashed',
# color = 'red',
# size = .3) +
# geom_hline(
# yintercept = TIT,
# linetype = 'dashed',
# color = 'black',
# size = .3
# ) +
# geom_vline(
# xintercept = TIN,
# linetype = 'dashed',
# color = 'black',
# size = .3
# ) +
# geom_point(
# data = data.frame(x = TIN, y = TIT),
# aes(x, y),
# color = 'black',
# fill = 'white',
# size = 3,
# shape = 21
# ) +
# guides(shape = guide_legend("Clusters"), color = FALSE) +
# mobster:::my_ggplot_theme() +
# labs(
# title = paste0(""),
# x = 'VAF germline',
# y = "VAF tumour"
# # subtitle = paste0(
# # "Clonal cluster (tumour) : ",
# # paste(MOBSTER_analysis_results$clonal_cluster, collapse = ', '),
# # " (n = ", length(MOBSTER_analysis_results$clonal_mutations), ')',
# # '\n',
# # "Germline weigth : ",
# # paste(germline_analysis_results$clonal_cluster, collapse = ', ')
# # )
# ) +
# scale_color_manual(values = group_labels_colors)
#
# vtin = data.frame(
# variable = c('Tumour cells', 'Normal cells', 'Tumour cells', 'Normal cells'),
# value = c(TIN * 2, 1 - (TIN * 2), TIT * 2, 1 - (TIT * 2)),
# sample = c(
# 'Normal sample',
# 'Normal sample',
# 'Tumour sample',
# 'Tumour sample'
# )
# )
#
# f3 = ggplot(data = vtin,
# aes(x='1', y = value, fill = variable)) +
# geom_bar(stat = 'identity') +
# mobster:::my_ggplot_theme() +
# facet_wrap(~sample, ncol = 2, nrow = 1) +
# # coord_flip() +
# coord_polar("y", start = 0, clip = 'off') +
# labs(
# title = paste0("Sample composition"),
# x = element_blank(),
# y = "Percentage",
# subtitle = paste0(
# "TIN: ",
# round(vtin$value[1] * 100, 2),
# '%',
# " (",
# round(vtin$value[2] * 100, 2),
# '% germline)\n',
# "TIT : ",
# round(vtin$value[3] * 100, 2),
# '% (',
# round(vtin$value[4] * 100, 2),
# '% germline)'
# )
# ) +
# scale_fill_manual(values = c(`Tumour cells` = 'plum4', `Normal cells` = 'plum2')) +
# guides(fill = guide_legend(''))
#
#
# return(list(data_table = data_table,
# summary_plot = figure,
# zoom_plot = f2,
# sample_composition = f3,
# TIN = TIN, TIT = TIT))
#
# figure = cowplot::plot_grid(
# # plot_input,
# figure,
# f2,
# f3,
# ncol = 3,
# nrow = 1,
# align = 'h', axis = 'x'
# )
#
#
# return(list(data_table = data_table, plot = figure, TIN = TIN, TIT = TIT))
#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.