
Visualization, Quality Control and Statistical

Analysis for Ribosome Profiling data :

the RiboVIEW Package

Carine Legrand∗,† Francesca Tuorto‡

September 2019

∗Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im
Neuenheimer Feld 580, 69120 Heidelberg, Germany. c.legrand@dkfz.de

†Independent researcher, Kreuzstr. 5, 68259 Mannheim. carine.legrand1@gmail.com
‡Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im

Neuenheimer Feld 580, 69120 Heidelberg, Germany.

1

Contents

1 Introduction 3

2 Installing RiboVIEW 3

2.1 Installing R package RiboVIEW 3
2.2 Python dependencies . 4

3 Setting up RiboVIEW 5

3.1 Input and output directory . 5
3.2 Reading BAM, FASTA and CDS annotation files 5
3.3 Describing the experiment . 6

4 Periodicity check and creation of enrichment files 6

5 Visualization 9

6 Quality controls 11

6.1 Replicates . 11
6.2 Drug artifacts . 12
6.3 Batch effects . 13
6.4 Metagene . 15

7 HTML outputs 16

7.1 Quality control . 16
7.2 Visualization . 17

A Example workflow from SRA to BAM files 19

B Python script for synthetic BAM files 22

C Troubleshooting 26

C.1 Output files are not located in the working directory. 26
C.2 RiboVIEW cannot find a file. 26
C.3 R returns a warning like : ”The following objects are masked from

(...)” . 26

2

1 Introduction

The RiboVIEW package provides quality control, an unbiased estimate of
enrichment and visualization tools for ribosome profiling data. This vignette
describes the workflow from alignment files (BAM format) to RiboVIEW output
files, including RiboQC and RiboMINE html files. This is done on the base
of synthetic BAM files, which are small enough to be included in a software
package, and which are fully defined :

❼ 2 conditions, 3 replicates per condition,

❼ 20000 reads, 100 mRNA

❼ A site mostly in-frame in simulated footprints (odds 50:11:1 in 0/+1/+2
reading frame)

❼ Codon Proline-CCC is paused in condition 2 as compared to condition 1.

Additionally, the following information is appended :

❼ Example Workflow from SRA to BAM files,

❼ File used to generate synthetic BAM files used in this vignette (in Python),

❼ Troubleshooting.

2 Installing RiboVIEW

2.1 Installing R package RiboVIEW

RiboVIEW can be installed in R (≥ 3.4.4) using
> install.packages("RiboVIEW")

which will fetch the package directly from CRAN repository. After successful
installation, package RiboVIEW is loaded by

> library(RiboVIEW)

Alternatively, it’s possible to download the source package RiboVIEW 1.0.tar.gz
from CRAN and install it using :

> install.packages("PATH/TO/FILE", repos = NULL, type="source")

Yet further alternatives exist, please consult CRAN help pages for details :
https://cran.r-project.org/manuals.html.

If installing from source, the user should also make sure that the following
R packages dependencies are present :

❼ dendextend (≥ 1.8.0)

3

https://cran.r-project.org/manuals.html

❼ ggplot2 (≥ 3.0.0)

❼ gplots (≥ 3.0.1)

❼ gridExtra (≥ 2.3)

❼ latex2exp (≥ 0.4.0)

❼ MASS (≥ 7.3-50)

❼ png (≥ 0.1-7)

❼ RColorBrewer (≥ 1.1-2)

❼ PythonInR (≥ 0.1-7)

❼ R.devices (≥ 2.16.1)

❼ tseriesChaos (≥ 0.1-13)

❼ tsne (≥ 0.1-3)

❼ VennDiagram (≥ 1.6.20)

2.2 Python dependencies

RiboVIEW package relies on Python for calculation of all base metrics, in-
cluding enrichment (version 2.7.6 or superior, up to 2.7.9). This package was
developed and tested in Python 2, though large parts of the code would probably
also work well in Python 3.

Further, some Python modules are necessary as well. Some should already
be present in the core Python distribution, others should be installed, for ex-
ample using pip (see https://pip.pypa.io/en/stable/installing/ for pip
installation and instructions).

The list of these dependencies is :
❼ Biopython (≥ 1.72, available from https://biopython.org/wiki/Download)

❼ numpy (≥ 1.8.2, available from https://www.numpy.org, see detailed in-
stallation instructions at https://www.scipy.org/install.html)

❼ pysam (≥ 0.15.0, available from https://pypi.org/project/pysam/)

Now that everything is installed, it is possible to start using RiboVIEW.
The next section describe how to setup RiboVIEW for a set of aligned reads
(BAM files), and the corresponding experiment.

4

https://pip.pypa.io/en/stable/installing/
https://biopython.org/wiki/Download
https://www.numpy.org
https://www.scipy.org/install.html
https://pypi.org/project/pysam/

3 Setting up RiboVIEW

3.1 Input and output directory

Setup starts with defining the folder where input BAM files are located.
These synthetic BAM files are provided with RiboVIEW package, they are
located in the package subfolder inst/extdata/. The following command :
> idir <- paste(system.file(package="RiboVIEW"), "/extdata/",sep="")

> idir

will locate this folder on the user’s computer. Second, the address of the
output directory, which is where all plots, tables and RData files will be placed,
should be specified, using for example :

> pathout <- paste(tempdir(),"/output-files-vignette-RiboVIEW/",sep="")

This command defines an address in a temporary directory, using command
tempdir(). It is advised to define one’s own address for the output folder :

> pathout <- "/Path/to/my/RiboVIEW/output/directory/"

When doing this, make sure to include a final slash ”/” character. Run the
following commands to create the output folder, and to navigate to it :

> system(paste("mkdir -p ",pathout,sep=""))

> setwd(pathout)

3.2 Reading BAM, FASTA and CDS annotation files

The addresses of synthetic BAMs provided in RiboVIEW package are pro-
vided by the following commands. These addresses are gathered in list.bam.

> readsBAM.1.1 <- paste(idir,"Cond1-Rep1.bam",sep="")

> readsBAM.1.2 <- paste(idir,"Cond1-Rep2.bam",sep="")

> readsBAM.1.3 <- paste(idir,"Cond1-Rep3.bam",sep="")

> readsBAM.2.1 <- paste(idir,"Cond2-Rep1.bam",sep="")

> readsBAM.2.2 <- paste(idir,"Cond2-Rep2.bam",sep="")

> readsBAM.2.3 <- paste(idir,"Cond2-Rep3.bam",sep="")

> list.bam <- list(readsBAM.1.1, readsBAM.1.2, readsBAM.1.3,

+ readsBAM.2.1, readsBAM.2.2, readsBAM.2.3)

Similarly, addresses for reference sequences file (FASTA format), and CDS
(CoDing Sequence) annotation file (tab-separated format), are read as follows :

> # Reference sequences for mRNAs

> refFASTA=paste(idir,"synth.fasta",sep="")

> # Reference annotation for mRNAs✬ CDS

> refCDS=paste(idir,"synth.tsv",sep="")

5

It’s the responsibility of the user to generate CDS annotation in this tab-
ular format. We provide the utility gtf2table.py as a help to generate this
annotation from a GTF (General Transfer Format) file, as provided for ex-
ample from Ensembl page ”Downloads” / ”Download data by FTP” : https:

//www.ensembl.org/info/data/ftp/. The tabular annotation should look like
the following :

ID localStart localEnd strandDir exonLength
mRNA0 78 486 + 545
mRNA1 131 455 + 491
mRNA2 64 1384 + 1408
mRNA3 146 761 + 836
(etc.)

3.3 Describing the experiment

Typically, an experiment will have a Control (or Wild-type) condition and
at least one Intervention (or GeneKO, etc.) condition. Here, since data is
simulated, conditions are neutrally named Condition1 and Condition2, and
sample names are C1.R1 for condition 1, replicate 1, C1.R2 for condition 1,
replicate 2, etc. Further, a numeric version of conditions 1 and 2 is coded by
integers 1 and 2.

Condition names, condition numerals and sample names are passed on to
RiboVIEW using following lines :
> XP.conditions <- c("cond1","cond1","cond1","cond2", "cond2","cond2")

> XP.conditions.i <- c(1,1,1,2,2,2)

> XP.names <- c("C1.R1", "C1.R2", "C1.R3",

+ "C2.R1", "C2.R2", "C2.R3")

The variable XP.conditions.i corresponds to XP.conditions, where con-
dition 1 is coded ”1” and condition 2 is coded ”2”.

4 Periodicity check and creation of enrichment
files

Function ”periodicity” creates a table of coverage in -20nt to +20nt (nt : nu-
cleotide) around the A-site, for footprint lengths in [25;32]nt, using the following
command line :
> periodicity(list.bam, refCDS, refFASTA, pathout, XP.names,

+ versionStrip = FALSE)

This function prints the number of transcripts found in FASTA file, and how
many of them have a correct annotation. It also gives the address of the
output file. For example, for condition 1, replicate 1, the address will be
<pathout>/Sample-C1.R1 OL.txt. This file looks like :

6

https://www.ensembl.org/info/data/ftp/
https://www.ensembl.org/info/data/ftp/

position 25 26 27 28 29 30 31 32
-20 0 0 0 0 0 0 0 0
-19 0 0 0 0 0 0 0 0
-18 0 0 0 0 0 0 0 0
-17 0 0 0 0 0 0 0 0
-16 0 0 0 0 0 0 0 0
-15 0 0 0 0 0 0 0 0
-14 0 0 0 0 0 0 0 0
-13 0 0 0 0 0 0 0 0
-12 25 24 25 17 28 20 15 18
-11 4 2 6 7 2 6 4 4
-10 1 0 1 1 0 1 0 0
(etc.)

It is now possible to select which footprint lengths are appropriate for further
analysis, by using function select.FPlen and following instructions :

> attach(listminmax <- select.FPlen(list.bam, pathout, XP.names))

Please select footprint lengths with - sufficient data,

- sufficient periodicity, and

- peak at -12 nt.

(Expected peak at -12 not -15 since transition A-P at initiation

is almost immediate.)

Note acceptable footprint lengths, then press [enter] to continue.

The recurrence plots for all footprint lengths in one sample appear :

and the user is asked to pick appropriate footprint lengths for this sample.
There should be a peak at initiation of ribosome, in P-site, at -12nt and not

before (black bar designated by an orange arrow in the figure below), and there
should be periodic coverage every 3nt from -12nt to +18nt (blue arrows).

7

Here, footprint length of 25nt is appropriate. Looking successively at other
footprint lengths, it appears that footprint lengths of 26nt, 27nt, ..., 32nt are
also appropriate, in condition 1 and replicate 1.

This is repeated for replicates 2 and 3 of condition 1, and for all 3 replicates
of condition 2. As a result, lengths 25nt to 32nt are suitable in all samples.

After that, function selecFPlen prompts for the minimum acceptable value :

Enter minimum acceptable footprint length

(this will be applied for all samples),

then press [enter] to continue :

Type 25 as the minimum and press enter. Now, one should see the following :

Similarly, enter MAXimum acceptable footprint length

then press [enter] to continue :

Type 32 as the maximum and press enter.
As this first basic quality control is done, it is now possible to calculate

codon enrichment, occupancy, etc. for each sample, by running the following
command line :

enrichmentNoccupancy(list.bam, refCDS, refFASTA, mini, maxi, XP.names,pathout,
versionStrip = FALSE)

Please enter the number of cores you would like to use for parallel

computations :

(recommended value for your computer : 7),

then press [enter] to continue.

The function enrichmentNoccupancy is tuned to parallelize calculations for
faster generation of results. By default, it will take the suggested value (all
cores minus 1, so that the user’s computer stays available for other tasks).
Nevertheless, the user can pick another value if relevant. Here we select 6, since
there are only as many samples, and we type enter.

Calculations start, and an evaluation of duration is shown, as well as a list
of outputs generated. These outputs are :

8

File name ”Sample-C1.R1 ...” Description

BCO Codon occupancy for A-site, P-site, E-site and
3 codons upstream and downstream

Codon-enrichment-unbiased mean Unbiased codon enrichment for A-site, P-site,
E-site and 90 codons upstream and down-
stream, average over mRNAs

Codon-enrichment-unbiased sd Unbiased codon enrichment for A-site, P-site,
E-site and 90 codons upstream and down-
stream, standard deviation over mRNAs

Hussmann mean Codon enrichment following Hussmann et al.
2015 (doi : 10.1371/journal.pgen.1005732),
average

Hussmann sd Codon enrichment following Hussmann et al.
2015 (doi : 10.1371/journal.pgen.1005732),
standard deviation

Sample-C1.R1.limCod Codon count at footprint start and footprint
end

Sample-C1.R1.limNt Nucleotide count at footprint start and foot-
print end

Sample-C1.R1.metagene Coverage of codons in A-site at standardized
positions along CDS, to construct metagene
plot

Sample-C1.R1.nbreads Count of footprints per mRNA
Sample-C1.R1.paused Repertoire of paused sites (in A site, codons 3

times more paused than codons in the vicinity)
Sample-C1.R1.RPKM Count of reads per kilobase exon per million

mapped
Sample-C1.R1.SCO Single-Codon Occupancy = single-codon cov-

erage in A-site / average coverage in an mRNA

These files constitute the basis for most quality controls and visualization
plots and metrics. When calculations stop and a new prompt appears, all these
files will have been created in the output folder defined earlier (paragraph 3.1).
Now, everything is ready for creating visualization and quality control values
and plots.

5 Visualization

Visualization relies on mean, standard deviation and standard error by con-
dition, as well as ratios between conditions. This is calculated by function
generate.m.s :
> generate.m.s(XP.conditions, XP.names, pathout, B=1000)

Next, enrichment plots, tracks and Venn diagrams are created by the follow-
ing :

> visu.m.s.enrichmnt.res <- visu.m.s.enrichmnt(XP.conditions,

+ XP.names, pathout)

> visu.m.s.enrichmnt.res

> visu.tracks.res <- visu.tracks(XP.conditions, XP.names, pathout,

9

+ refCDS, mRNA="random", codon.labels=FALSE,

+ codon.col="darkslateblue")

> visu.tracks.res

> Venn.all.res <- Venn.all(XP.names, pathout)

> Venn.all.res

> enricht.aroundA.res <- enricht.aroundA(XP.conditions,

+ XP.names, pathout)

> enricht.aroundA.res

These functions do not return plots directly, instead they store them in the
output folder, and register their addresses in variables visu.m.s.enrichmnt.res,
visu.tracks.res, V enn.all.res and enricht.aroundA.res. These addresses are
later used in HTML reports. For example, enrichment for 2 comparisons, stored
as visu.m.s.enrichmnt.res$plot.enrich, is given in the next figure :

In agreement with simulated conditions, Proline-CCC codon is less enriched
in condition 1 as compared to condition2, as is visible on this figure.

Furthermore, enrichment of each codon in and around the A-site is displayed
as follows (truncated view) :

10

This corresponds to files enrichment-all_C1.R1 and enrichment-all_C2.R1
(.png or .eps depending on the format of these plots), stored in the output folder
which was defined previously. Again, Proline-CCC enrichment is clearly visible
in condition 2 as compared to condition 1. Some profiles display noise or seeming
trends, for instance codon GUC, however this corresponds to randomness only.
Both noise and perceived patterns smooth out when generating more reads, for
instance 100000 instead of 20000 in the present case (this can be done with the
Python script provided in appendix B, using NbReads=100000).

Visualization graphics are integrated later on in the ”RiboMINE” html re-
port.

6 Quality controls

6.1 Replicates

Replicates consistency is examined using the intersection of translated mR-
NAs in several replicates (Venn diagram per condition), footprint count corre-
lation at gene level (permissive, since 0.90 is easily attained, even in relatively
poor datasets), and at codon level (more stringent, only high coverage datasets
can reach high correlation levels). Finally, a heatmap with hierarchical cluster-
ing reveals if replicates do effectively cluster more closely together than if they
were chosen at random.

These quality controls are created using following commands :
> repl.correl.counts.Venn.res <- repl.correl.counts.Venn(XP.conditions,

+ XP.names, pathout)

> repl.correl.counts.Venn.res

> repl.correl.gene.res <- repl.correl.gene(XP.conditions, XP.names,

11

+ pathout)

> repl.correl.gene.res

> repl.correl.codon.res <- repl.correl.codon(list.bam, refCDS,

+ refFASTA, mini, maxi, XP.names, XP.conditions, pathout)

> repl.correl.codon.res

> repl.correl.heatmap.res <- repl.correl.heatmap(XP.conditions.i,

+ XP.names, pathout)

> repl.correl.heatmap.res

Again, these functions do not return plots directly, but store them in the out-
put folder. Addresses of plots, and metrics for each quality control are stored in
variables repl.correl.counts.V enn.res, repl.correl.gene.res, repl.correl.codon.res
and repl.correl.heatmap.e.res. A brief text interpreting the quality value is also
given. These addresses, values and text are later used in HTML reports.

Below is for example the heatmap plot :

The dendrogram clearly indicates separation between condition 1 and con-
dition 2. Furthermore, Spearman correlation coefficient between conditions and
actual clustering is 1.0, unsurprisingly. This correlation coefficient is given by
variable repl.correl.heatmap.e.res$value.

6.2 Drug artifacts

Presence or not of drug artifacts is examined using Arginine codons enrich-
ment in a window of +/- 90nt around A-site, and using logo plots of nucleotides
and codons at footprint boundaries.

Quality controls for drugs artifacts are run as follows :

12

> chx.artefacts.res <- chx.artefacts(XP.conditions, XP.names,

+ pathout)

> chx.artefacts.res

> ntcodon.freq.nt.res <- ntcodon.freq.nt(XP.conditions, XP.names,

+ pathout)

> ntcodon.freq.nt.res

> ntcodon.freq.cod.res <- ntcodon.freq.cod(XP.conditions,

+ XP.names, pathout)

> ntcodon.freq.cod.res

The graphic corresponding to Arginine codons enrichment is as follows :

Notably, enrichment for all codons is given in the HTML report Results-
Mine.html, since functional differences might also appear on some other codons.

6.3 Batch effects

Complementing replicates lookup, unsupervised search of batch effects is
performed.
> batch.effects.lm.e.res <- batch.effects.lm.e(XP.conditions, XP.names, pathout)

> batch.effects.lm.e.res

> batch.effects.pca.res <- batch.effects.pca(XP.conditions, XP.names, pathout)

> batch.effects.pca.res

Potential batch effects on nucleotides are given below:

13

This plot displays the coefficient of a linear fit of codon enrichment relative to
a, c, g or u-content in codons, for each replicate. If we denote k the coefficient,
or slope, of the linear fit of condition 1, replicate 1 enrichment on c-content,
then any additional c in codons is associated with a k*1 increase (or decrease
in case k is negative) mean enrichment of these codons. Clearly, coefficients are
very small in regard with the range of values [-1 ; 1]. This y-axis range can be
larger if necessary, but it cannot be smaller, with the purpose of avoiding any
over-interpretion of a slope which is tiny enough to be irrelevant, which is the
case here.

Nevertheless, there could be a relevantly high coefficient, with error bars
giving an indication if the coefficient could be significantly different from 0. More
precisely, p-values are given in batch.effects.lm.res$recommendation.mat, as
well as linear fit coefficients and associated standard errors. These values for
replicate 1 in condition 1 are reproduced here :

> library(gridExtra)

> grid.table(round(batch.effects.lm.res$recommendation.mat, 4)[,1:3])

The lowest p-value after correction for multiple testing is given in batch.effects.lm.res$value,
as follows :

14

> batch.effects.lm.res$value

[1] 0.01329084

This adjusted p-value corresponds to the fit on u-content in condition 1,
replicate 1 (raw p-value = 0.0022). It is lower than the cutoff 0.05 and therefore
significant, however, as highlighted above, the corresponding coefficient is too
small to be relevant (this coefficient is 0.0272 per additional u). This likely
corresponds to a false positive, since the false positive rate, using 0.05 as a
cutoff, is 5% of the 16 computed p-values, that is to say about 1 false positive
p-value in this set of values.

6.4 Metagene

Further, plotting footprint density along a normalized transcript (metagene)
allows to visualize if monosome selection was adequate, if there were inflation
of reads just after AUG (ribosome leakage in case of incomplete initiation inhi-
bition), or if there was leakage (readthrough) at one of the STOP codons.

These quality controls are generated using :
> metagene.res <- metagene.all(XP.conditions, XP.names, pathout)

> metagene.monosome.res <- metagene.res[[1]]

> metagene.monosome.res

> metagene.inflation.res <- metagene.res[[2]]

> metagene.inflation.res

> metagene.leakage.res <- metagene.res[[3]]

> metagene.leakage.res

For instance, leakage at AUG or STOP codon would be apparent on the plot
below :

15

In this ideal case, in accordance with simulation setting, there is no leakage.
This is further described by the associated value variable inmetagene.leakage.res :

> metagene.leakage.res$value

$start

$start$p

[1] 1

$stop

$stop$median

[1] 0

$stop$sd

[1] 0

7 HTML outputs

7.1 Quality control

HTML report for quality control is generated using the following command :
> outputQc(pathout, XP.conditions)

16

This creates the file Results-Qc.html. Opened with an internet browser
(the page worked fine under Chrome, Safari, Firefox, Brave and IE), the report
looks like the following :

This instance of the report corresponds to category Replicates, tab Corre-

lation between genes. The user can then navigate by selecting one of the four
categories Periodicity, Replicates, Footprints and Drugs, and by clicking
the desired tab inside of each category.

7.2 Visualization

HTML report for visualization is generated using the following command :
> outputMine(pathout, XP.conditions)

This creates the file Results-Mine.html. Similarly, the report opened in an
internet browser looks as follows :

17

This instance of the report corresponds to category Within conditions, tab
Tracks. Again, the user can navigate by selecting one of the categories Within
conditions, Between conditions and Codon enrichment and clicking the tab
of interest.

18

A Example workflow from SRA to BAM files

This workflow is adapted to a situation where SRA files have been down-
loaded from Gene Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo). Files from GEO usually bear names like SRR<some num-

bers>.sra. This workflow is accordingly tailored to such file names. The user
is free to adapt this aspect. Furthermore, adapter trimming might need some
modifications, depending on experimental and sequencing setting.

#!/bin/bash

path=/home/user/Riboview/data/GSExxxxx/SRA

cd $path

Check consistency of SRA f i l e s

for sample in SRR1 \

SRR2 \

SRR3 \

SRR4

do

vdb−validate $sample ’.sra’

done &> screenoutput_sra−validate−stats.log

####SRA to FASTQ. gz and FASTQC1

mkdir Fastqc1_Downloaded

for sample in SRR1 \

SRR2 \

SRR3 \

SRR4

do

echo $sample

sra to fastq . gz

fastq−dump −Z −−gzip $sample.sra > $sample.fastq.gz

fastqc

fastqc $sample.fastq.gz −o Fastqc1_Downloaded

echo

done &> screenoutput_Fastqc1.log &

####Remove adapters

mkdir Fastqc2_Cutadapt

for sample in ‘ls SRR[1234].fastq.gz | sed ’s/.fastq.gz//g’‘

do

echo $sample

cutadapt v1.8.1

cutadapt −−format=fastq \

−a CTGTAGGCACCATCAAT \

−−error−rate=0.1 \

19

https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo

−−times=2 \

−−overlap=1 \

−−output=$sample.cutadapt.gz \

$sample.fastq.gz

fastqc

fastqc $sample.cutadapt.gz −o Fastqc2_Cutadapt

done &> screenoutput_cutadaptNfastqc2.log &

Quality−trim both ends and inside (sl iding window) , size−select , and

(optionally , not done here) remove adapter

mkdir Fastqc3_QCed

for sample in SRR1 \

SRR2 \

SRR3 \

SRR4

do

echo $sample

Quality trimming using Trimmomatic

java −jar /home/user/prog/Trimmomatic−0.38/trimmomatic−0.38.jar \

SE \

−phred33 \

$sample.fastq.gz \

$sample.QCed.fq.gz \

LEADING:30 \

TRAILING:30 \

MINLEN:25 \

CROP:36

fastqc

fastqc $sample.QCed.fq.gz −o Fastqc3_QCed

done &> screenoutput_QCedNfastqc3.log &

Depletion of rRNA, tRNA, MT−trmRNAetc

Build reference

bowtie−build \

/home/user/Ref/organism_trRNA_MT−trmRNA_v1.fasta \

organism_trRNA_MT−trmRNA_v1

Align with Bowtie

for sample in ‘ls SRR[1234].QCed.fq.gz | sed ’s/.QCed.fq.gz//g’‘

do

echo $sample

gzip −dc $sample.QCed.fq.gz | bowtie \

−−sam \

−−seedmms 2 \

−−seedlen 11 \

−−seed 494123 \

−−maqerr 70 \

−−tryhard \

−k 1 \

20

−−un $sample.

deplof_trRNA_MTtrmRNA.fq \

−−best \

−−maxbts 800 \

organism_trRNA_MT−trmRNA_v1 \

− \

| samtools view −hb − > $sample.

trRNA_MTtrmRNA.bam

done &> screenoutput_Align.depl.log &

Align to mRNA

Build reference

bowtie−build \

/home/user/Ref/organism_mRNA_v1.fasta \

organism_mRNA_v1

Align , uniquely , with Bowtie

for sample in ‘ls SRR[1234].fastq.gz | sed ’s/.fastq.gz//g’‘

do

echo $sample

bowtie \

−−sam \

−−seedmms 2 \

−−seedlen 11 \

−−seed 764351 \

−−maqerr 70 \

−m 1 \

organism_mRNA_v1 \

$sample.deplof_trRNA_MTtrmRNA.fq \

| samtools view −hb − > $sample.mRNA.bam

done &> Align.mRNA.screen &

Checksums

for fichier in ✯.mRNA.bam

do

echo $fichier

md5sum $fichier > $fichier.md5sum

done

21

B Python script for synthetic BAM files

This Python script generates synthetic mRNAs (synth.fasta), their coding
sequence annotation (synthetic.tsv), and simulates footprint reads from this
pool of mRNAs for 2 conditions and 3 replicates per condition. Condition 1 is a
control condition, while condition 2 exhibits enriched Pro-CCC codon. This is
simulated by a doubled probability of sampling a footprint with A-site located at
a Pro-CCC codon. This script requires SAMtools (http://www.htslib.org),
as well as Python packages pysam and numpy to run properly.

#!/usr/bin/python

#

Purpose : generate fasta , tsv f i l e and bam f i l e s for package−included

synthetic f i l e s .

#

Setting : Codon Proline CCC enriched (slower) in condition 2 :

sampling probability ✯2 for this codon .

#

#

import pysam

import os

import random

Parameters

NbReads = 20000

filedir = "./synth−files−vignette/"

Create input directory

os.system("mkdir −p "+filedir)

tsvFile = filedir+"synth.tsv"

faFile = filedir+"synth.fasta"

seed = 7234

Set random seed

random.seed(seed)

Nmrna = 100

t and not u because samtools considers only t .

bases = [’a’,’c’,’g’,’t’]

Codons to sample from

codons = [’aaa’,’aac’,’aag’,’aat’,’aca’,’acc’,’acg’,’act’,’aga’,’agc’,

’agg’,’agt’,’ata’,’atc’,’atg’,’att’,’caa’,’cac’,’cag’,’cat’,

’cca’,’ccc’,’ccg’,’cct’,’cga’,’cgc’,’cgg’,’cgt’,’cta’,’ctc’,

’ctg’,’ctt’,’gaa’,’gac’,’gag’,’gat’,’gca’,’gcc’,’gcg’,’gct’,

’gga’,’ggc’,’ggg’,’ggt’,’gta’,’gtc’,’gtg’,’gtt’,’tac’,’tat’,

’tca’,’tcc’,’tcg’,’tct’,’tgc’,’tgg’,’tgt’,’tta’,’ttc’,’ttg’,

’ttt’]

stops = [’taa’,’tag’,’tga’]

NbCond = 2

NbRep = 3

Ini t i a l i z e synthetic mRNAs in virtual table name i , length i ,

22

http://www.htslib.org

sequence i

Note : no UTRs and here lenNt = lenCDS (+3nt of stop codon)

mRNAname = [None] ✯ Nmrna

CDSlenC = [None] ✯ Nmrna

CDSlenNt = [None] ✯ Nmrna

mRNAnt5UTR = [None] ✯ Nmrna

mRNAnt3UTR = [None] ✯ Nmrna

mRNAlenNt = [None] ✯ Nmrna

mRNAseq = [None] ✯ Nmrna

Pos_CCC = [None] ✯ Nmrna

outFA = open(faFile, ’w’)

outTSV = open(tsvFile, ’w’)

outTSV.write("ID\tlocalStart\tlocalEnd\tstrandDir\texonLength\n")

Generate synthetic mRNAs

for i in range(Nmrna) :

mRNAname[i] = "mRNA"+str(i)

CDSlenC[i] = random.randint(50,500)

CDSlenNt[i] = 3✯CDSlenC[i]

mRNAnt5UTR[i] = random.randint(20,200)

mRNAnt3UTR[i] = random.randint(0,100)

mRNAlenNt[i] = mRNAnt5UTR[i] + CDSlenNt[i] + mRNAnt3UTR[i]

Elements for sequence construction

mRNA_Pre5 = ’’.join([random.choice(bases) for ii in range(

mRNAnt5UTR[i])])

mRNA_PreC0 = [random.choice(codons) for ii in range(CDSlenC[i

]−2)]

mRNA_PreC = ’’.join(mRNA_PreC0)

mRNA_Stop = random.choice(stops)

mRNA_Pre3 = ’’.join([random.choice(bases) for ii in range(

mRNAnt3UTR[i])])

Construct a sequence

mRNAseq[i] = mRNA_Pre5 + ’atg’ + mRNA_PreC + mRNA_Stop +

mRNA_Pre3

i i+1 since AUG is not yet in mRNAPreC

(i i+1)<(CDSlenC[i]−15) to yield valid footprints later on

Pos_CCC[i] = [ii+1 for ii,x in enumerate(mRNA_PreC) if x=="ccc"

if (ii+1)<(CDSlenC[i]−15)]

Write entry to fasta

outFA.write(">"+mRNAname[i]+"\n")

for j in range(mRNAlenNt[i]/100) :

outFA.write(mRNAseq[i][(j✯100):(j✯100+100)]+"\n")

j=j+1

outFA.write(mRNAseq[i][(j✯100):]+"\n")

23

Write entry to TSV

outTSV.write(mRNAname[i]+"\t"+str(mRNAnt5UTR[i])+"\t"+str(

mRNAnt5UTR[i]+CDSlenNt[i])+"\t+\t"+str(mRNAlenNt[i])+"\n")

outFA.close()

outTSV.close()

Generate SAM/BAM f i l e for each condition and replicate

for Cond in range(1,1+NbCond) :

for Rep in range(1,1+NbRep) :

samFile = filedir+"Cond"+str(Cond)+"−Rep"+str(Rep)+".sam"

bamFile = filedir+"Cond"+str(Cond)+"−Rep"+str(Rep)+".bam"

Open SAM output f i l e for writing

with open(samFile, ’w’) as fout :

Create sam f i l e header

fout.write("@HD\tVN:1.0\tSO:unsorted\n")

for i in range(Nmrna) :

fout.write("@SQ SN:"+mRNAname[i]+" LN:"+str(

mRNAlenNt[i])+"\n")

fout.write("@PG ID:Synthetic\n")

Create sam f i l e entries

for i in range(NbReads) :

imRNA = random.randint(0,Nmrna−1)

Qname = "C"+str(Cond)+"−R"+str(Rep)+"."+str(i)

Flag = "0"

Rname = mRNAname[imRNA]

Sample positions that would yield valid footprints :

pos cannot be in the last 35nt of CDS,

− with periodicity (”1+3✯random. randint (. . .) ”) ,

− locate in P−s i te i f AUG, else in A (AP Offset) ,

− mostly in−frame (”random. choice ([0]✯50+.. .”) .

More weight (pause) on Pro−CCC, in Cond2

k = 2

indices = (range(CDSlenC[imRNA] − 15) + (k−1)✯Pos_CCC[

imRNA])

Pos_codonInCDS_inequal_pre = random.choice(indices)

Pos_codonInCDS_inequal = 1 + 3 ✯

Pos_codonInCDS_inequal_pre #0 ,(CDSlenC[imRNA]−15))

Sample equally along CDS

Pos_codonInCDS_equally = 1 + 3 ✯ random.randint(0,(

24

CDSlenC[imRNA]−15))

Attribute footprint reads with equal or unequal

sampling depending on experimental condition

if Cond==2 :

Pos_codonInCDS = Pos_codonInCDS_inequal

else :

Pos_codonInCDS = Pos_codonInCDS_equally

AP_Offset = −15

if Pos_codonInCDS == 1 :

AP_Offset = −12

Elements for SAM/BAM f i l e entry

Pos = mRNAnt5UTR[imRNA] + Pos_codonInCDS + AP_Offset +

random.choice([0]✯50+[1]✯10+[2]✯1)

Mapq = "255"

Rnext = "✯"

Pnext = "0"

Tlen = random.randint(25,32) # Tlen = ”30”

Cigar = str(Tlen)+"M"

Seq = mRNAseq[imRNA][(Pos−1):(Pos−1+Tlen)]

Qual = "".join(Tlen✯["Z"])

Write to SAM

fout.write(Qname+"\t"+Flag+"\t"+Rname+"\t"+str(Pos)+"\t

"+Mapq+"\t"+

Cigar+"\t"+Rnext+"\t"+Pnext+"\t"+str(Tlen)+"

\t"+Seq+"\t"+Qual+"\n")

Convert sam to bam

os.system("samtools view −hb "+samFile+" > "+bamFile)

25

C Troubleshooting

C.1 Output files are not located in the working directory.

When defining the working directory, the user should make sure to include a
final ”/”.

> wdir <- "/Path/to/my/working/directory/"

C.2 RiboVIEW cannot find a file.

Were all commands run, following the same order as in the template ? Some files
and plots produced at one step are indeed necessary for other commands later
on, so that it’s preferable to run these commands in full and in the recommended
order.

Or, possibly, was the output folder moved to another place ? Most com-
mands rely on the output folder specified in variable pathout and on XP.names,
XP.names.i and XP.conditions. Make sure these didn’t change inadvertently.
If one of these variables was changed on purpose, it’s probably safest to make
a backup of the old output directory, and to run RiboVIEW freshly from start
with these newly defined variables.

C.3 R returns a warning like : ”The following objects are
masked from (...)”

This might happen when running ”attach(listminmax <- select.FPlen(list.bam,
pathout, XP.names))” twice. If the values in ’mini’ and ’maxi’ are the ones the
user selected, it’s fine to ignore this message. Otherwise, it is safer to run this
function in 2 steps :

> listminmax <- select.FPlen(list.bam, pathout, XP.names)

> mini <- listminmax[[1]]

> maxi <- listminmax[[2]]

26

	Introduction
	Installing RiboVIEW
	Installing R package RiboVIEW
	Python dependencies

	Setting up RiboVIEW
	Input and output directory
	Reading BAM, FASTA and CDS annotation files
	Describing the experiment

	Periodicity check and creation of enrichment files
	Visualization
	Quality controls
	Replicates
	Drug artifacts
	Batch effects
	Metagene

	HTML outputs
	Quality control
	Visualization

	Example workflow from SRA to BAM files
	Python script for synthetic BAM files
	Troubleshooting
	Output files are not located in the working directory.
	RiboVIEW cannot find a file.
	R returns a warning like : "The following objects are masked from (...)"

