
Introduction to the doRedis Package

Bryan W. Lewis
blewis@illposed.net

April 2, 2014

1 Introduction

The doRedis package provides a parallel back end for foreach using Redis and the corresponding
rredis package. It lets users easily run parallel jobs across multiple R sessions.

Steve Weston’s foreach package is a remarkable parallel computing framework for the R lan-
guage. Similarly to lapply-like functions, foreach maps functions to data and aggregates results.
Even better, foreach lets you do this in parallel across multiple CPU cores and computers. And even
better yet, foreach abstracts the parallel computing details away into modular back end code. Code
written using foreach works sequentially in the absence of a parallel back end, and works uniformly
across different back ends, allowing programmers to write code largely independent from specific
parallel implementations. The foreach package has many other wonderful features outlined in its
package documentation.

Redis is a fast, persistent, networked database with many innovative features, among them a
blocking queue-like data structure (Redis “lists”). This feature makes Redis useful as a lightweight
back end for parallel computing. The rredis package provides a native R interface to Redis used
by doRedis.

1.1 Why doRedis?

Why write a doRedis package? After all, the foreach package already has available many parallel
back end packages, including doMC, doSNOW and doMPI.

The key differentiating features of doRedis are elasticity and fault-tolerance, portability across
operating system platforms, and the ability to easily define custom distance measures on the spatial
(network) or temporal layout of data:

� doRedis allows for dynamic pools of workers. New workers may be added at any time, even

The doRedis Package

in the middle of running computations. This feature is geared for modern cloud computing
environments. Users can make an economic decision to “turn on” more computing resources
at any time in order to accelerate running computations. Similarly, modern cluster resource
allocation systems can dynamically schedule R workers as cluster resources become available.

� doRedis computations are partially fault tolerant. Failure of back-end worker R processes (for
example due to a machine crash or simply scaling back elastic resources) are automatically
detected and the affected tasks are re-submitted.

� User-defined task-pulling functions are supported. In particular, work can be preferentially
directed to sources of data with any user-defined notion of network/data distance. This is a
new feature introduced in March 2014.

� doRedis makes it particularly easy to run parallel jobs across different operating systems. It
works equally well on GNU/Linux, Mac OS X, and Windows systems, and should work well on
most POSIX systems. Back end parallel R worker processes are effectively anonymous–they
may run anywhere as long as all the R package dependencies required by the task at hand are
available.

� Intermediate results may be aggregated incrementally, significantly reducing required memory
overhead for problems that return large data.

2 Obtaining and Configuring the Redis server

Redis is an extremely popular open source networked key/value database, and operating system-
specific packages are available for all major operating systems, including Windows.

For more information see: http://redis.io/download.

The Redis server is completely configured by the file redis.conf. It’s important to make sure
that the timeout setting is set to 0 in the redis.conf file when using doRedis. You may wish to
peruse the rest of the configuration file and experiment with the other server settings as well.

3 doRedis Examples

Let’s start by exploring the operation of some doRedis features through a few examples. Unless
otherwise noted, we assume that Redis is installed and running on the local machine (“localhost”).

2

http://redis.io/download

The doRedis Package

3.1 A Really Simple Example

The simple example below is one version of a Monte Carlo approximation of π. Variations on this
example are often used to illustrate parallel programming ideas.

Listing˜1: Monte Carlo Example

> library (" doRedis ")

> registerDoRedis ("jobs")

> startLocalWorkers(n=2, queue="jobs")

> foreach(icount (10) ,. combine=sum ,

+ .multicombine=TRUE ,. inorder=FALSE) %dopar%

+ 4*sum((runif (1000000)^2 + runif (1000000)^2) <1)/10000000

[1] 3.144212

removeQueue ("jobs")

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

●

●

●

●
●

● ●
●

●

● ●●

● ●

●

●

●

●

●
●

●

●

The figure illustrates how the method works. We randomly choose points in the unit square. The
ratio of points that lie inside the arc of the unit circle (green) to the total number of points provides
an approximation of the area of 1/4 the area of the unit circle–that is, an approximation of π/4.
Each one of the 10 iterations (“tasks” in doRedis) of the loop computes a scaled approximation of
π using 1,000,000 such points. We then sum up each of the 10 results to get an approximation of π
using all 10,000,000 points.

3

The doRedis Package

The doRedis package uses the idea of a “work queue” to dole out jobs to available resources.
Each doRedis job is composed of a set of one or more tasks. Worker R processes listen on the work
queue for new jobs. The line

registerDoRedis("jobs")

registers the doRedis back end with foreach using the user-specified work queue name “jobs” (you
are free to use any name you wish for the work queue). R can issue work to a work queue even if
there aren’t any workers yet.

The next line:

startLocalWorkers(n=2, queue="jobs")

starts up two worker R sessions on the local machine, both listening for work on the queue named
“jobs.” The worker sessions don’t display any output by default. The startLocalWorkers function
can instruct the workers to log messages to output files or stdout if desired.

You can verify that workers are in fact waiting for work with:

getDoParWorkers()

which should return 2, for the two workers we just started. Note that the number of workers
may change over time (unlike most other parallel back ends for foreach). The getDoParWorkers

function returns the current number of workers in the pool, but the number returned should only
be considered to be an estimate of the actual number of available workers.

The next lines actually run the Monte Carlo code:

foreach(icount(10),.combine=sum,.multicombine=TRUE,.inorder=FALSE) %dopar%

4*sum((runif(1000000)^2 + runif(1000000)^2)<1)/10000000

This parallel loop consists of 10 iterations (tasks in this example) using the icount iterator function.
We specify that the results from each task should be passed to the sum function with .combine=sum.
Setting the .multicombine option to TRUE tells foreach that the .combine function accepts an
arbitrary number of function arguments (some aggregation functions only work on two arguments).
The .inorder=FALSE option tells foreach that results may be passed to the .combine function as
they arrive, in any order. The %dopar% operator instructs foreach to use the doRedis back end
that we previously registered to place each task in the work queue. Finally, each iteration runs the
scaled estimation of π using 1,000,000 points.

3.2 Fault tolerance

Parallel computations managed by doRedis tolerate failures among the back end worker R processes.
Examples of failures include crashed back end R sessions, operating system crash or reboot, power
outages, or simply dialing down elastic workers by turning them off. When a failure is detected,
affected tasks are automatically re-submitted to the work queue. The option ftinterval controls

4

The doRedis Package

how frequently doRedis checks for failure. The default value is 30 seconds, and the minimum allowed
value is one second. (Very frequent checks for failure increase overhead and will slow computations
down–the default value is usually reasonable.)

Listing 2 presents a contrived, but entirely self-contained example of fault tolerance. Verbose
logging output is enabled to help document the inner workings of the example.

Listing˜2: Fault Tolerance Example

> require (" doRedis ")

> registerDoRedis ("jobs")

> startLocalWorkers(n=4,queue="jobs",timeout =1)

> cat(" Workers started .\n")

> start <- Sys.time()

> x <- foreach(j=1:4, .combine=sum , .verbose=TRUE ,

> .options.redis=list(ftinterval =5, chunkSize =2)) %dopar%

> {

> if(difftime(Sys.time(),start) < 5) quit(save="no")

> j

> }

> removeQueue ("jobs")

The example starts up four local worker processes and submits two tasks to the work queue
“jobs.” (There are four loop iterations, but the chunkSize option splits them into two tasks of two
iterations each.) The parallel code block in the foreach loop instructs worker processes to quit if
less than 5 seconds have elapsed since the start of the program. Note that the start variable is
defined by the master process and automatically exported to the worker process R environment by
foreach–a really nice feature! The termination criterion will affect the first two workers that get
tasks, resulting in their immediate exit and simulating crashed R sessions.

Meanwhile, the master process has a fault check period set to 5 seconds (the ftinterval=5

parameter), and after that interval will detect the fault and re-submit the failed tasks.

The remaining two worker processes pick up the re-submitted tasks, and since the time interval
will be sufficiently past the start, they will finish the tasks and return their results.

The fault detection method is simple but robust, and described in detail in Section 4.

3.3 Dynamic Worker Pools and Heterogeneous Workers

It’s pretty simple to run parallel jobs across computers with doRedis, even if the computers have
heterogeneous operating systems (as long as one of them is running a Redis server). It’s also very
straightforward to add more parallel workers during a running computation. We do both in the
following examples.

5

The doRedis Package

Listing˜3: Simple Bootstrapping Example

> library (" doRedis ")

> registerDoRedis ("jobs")

> redisDelete ("count")

Set up some data

> data(iris)

> x <- iris[which(iris[,5] != "setosa"), c(1,5)]

> trials <- 100000

> chunkSize <- 100

Start some local workers

> startLocalWorkers(n=2, queue="jobs")

> setChunkSize(chunkSize)

Run the example

> r <- foreach(icount(trials), .combine=cbind , .inorder=FALSE) %dopar% {

> redisIncrBy (" count",chunkSize)

> ind <- sample (100, 100, replace=TRUE)

> estimate <- glm(x[ind ,2]∼x[ind ,1], family=binomial(logit))

> coefficients(estimate)

> }

> removeQueue ("jobs")

We’ll use the simple bootstrapping example from the foreach documentation to illustrate the
ideas of this section. The results presented here were run on the following systems:

� A GNU/Linux dual-core Opteron workstation, host name master.

� A Windows Server 2003 quad-core Opteron system.

We installed R version 2.11 and the doRedis package on each system (this example was run in
April, 2010! but it’s still relevant). The Redis server ran on the master GNU/Linux machine, as
did our master R session. The example bootstrapping code is shown in Listing 3.

We use the Redis “count” key and the redisIncrBy function to track the total number of jobs
run so far, as described below. We set the number of bootstrap trials to a very large number in
order to get a long-running example for the purposes of illustration.

We use a new function called setChunkSize in the above example to instruct the workers to
pull chunkSize tasks at a time from their work queue. Setting this value can significantly improve
performance, especially for short-running tasks. Setting the chunk size too large will adversely
affect load balancing across the workers, however. The chunk size value may alternatively be set
using the .options.redis options list directly in the foreach function as described in the package
documentation.

6

The doRedis Package

Listing˜4: Performance Visualization

> library ("xts")

> library (" rredis ")

> redisConnect ()

> l <- 50

> t1 <- Sys.time()

> redisIncrBy ("count",0)

> x0 <- as.numeric(redisGet ("count "))

> r <- as.xts(0,order.by=t1)

> while(TRUE)

> {

> Sys.sleep (2)

> x <- as.numeric(redisGet ("count "))

> t2 <- Sys.time()

> d <- (x-x0)/(difftime(t2,t1,units="secs ")[[1]])

> r <- rbind(r, as.xts(d, order.by=t2))

> t1 <- t2

> x0 <- x

> if(nrow(r)>l) r <- r[(nrow(r)-l):nrow(r),]

> plot(as.zoo(r),type="l",lwd=2,col=4, ylab="Tasks/second", xlab="Time")

> }

Listing˜5: Adding Additional Workers

> library (" doRedis ")

> startLocalWorkers(n=4, queue="jobs", host=" master ")

Once the above example is running, the workers update the total number of tasks taken in a
Redis value called “count” at the start of each loop iteration. We can use another R process to
visualize a moving average of computational rate. We ran the performance visualization R code in
Listing 4 on the “master” workstation after starting the bootstrapping example (it requires the xts

time-series package).

We started the example bootstrap code running on the “master” system and the logged in to
the much more powerful Windows Server system and added four additional workers using code in
Listing 5. The resulting performance plot clearly illustrates the dramatic increase in computational
rate when the new workers were added.

3.4 A Parallel boot Function

Listing 6 presents a parallel capable variation of the boot function from the boot package. The
bootForEach function uses foreach to distributed bootstrap processing to available workers. It has
two more arguments than the standard boot function: chunks and verbose. Set verbose=TRUE to

7

The doRedis Package

50
00

10
00

0
15

00
0

20
00

0
25

00
0

Time

Ta
ks

/s
ec

on
d

50:00 50:30 51:00 51:30

Figure 1: Performance gain after adding workers to a running computation

enabled back end worker process debugging. The bootstrap resampling replicates will be divided
into chunks tasks for processing by foreach. The example also illustrates the use of a custom
combine function in the foreach loop.

4 Technical Details

A doRedis task is a parameterized R expression that represents a unit of work. The task expression
is the body of a foreach loop. A single task may consist of one or more loop iterations depending
on the value of the chunkSize parameter (the default is one).

All of the tasks associated with a single foreach statement are collected into a doRedis job.
Each job is assigned a numeric identifier, and each job’s tasks are numbered 1, 2, 3,

Jobs are announced on a work queue–technically, a special Redis key called a “list” that supports
blocking reads. Users choose the name of the work queue in the registerDoRedis function. Master
R programs that issue jobs wait for results on yet another blocking Redis list, a result queue specific
to the job.

R workers listen on work queues for jobs using blocking reads. As shown in the last section the
number of workers is dynamic. It’s possible for workers to listen on queues before any jobs exist, or
for masters to issue jobs to queues without any workers available.

8

The doRedis Package

Listing˜6: Parallel boot Function

> bootForEach <- function (data , statistic , R, sim=" ordinary",

> stype="i", strata=rep(1, n), L=NULL , m=0,

> weights=NULL , ran.gen=function(d, p) d,

> mle=NULL , simple=FALSE , chunks=1,

> verbose=FALSE , ...)

> {

> thisCall <- match.call()

> n <- if (length(dim(data)) == 2) nrow(data)

> else length(data)

> if(R<2) stop("R must be greater than 1")

> Rm1 <- R - 1

> RB <- floor(Rm1/chunks)

> combo <- function (...)

> {

> al <- list (...)

> out <- al[[1]]

> t <- lapply(al , "[[", "t")

> out$t <- do.call("rbind", t)

> out$R <- R

> out$call <- thisCall

> class(out) <- "boot"

> out

> }

We define an initial bootstrap replicate locally. We use this

to set up all the components of the bootstrap output object

that don ′ t vary from run to run. This is more efficient for

large data sets than letting the workers return this information.

> binit <- boot(data , statistic , 1, sim = sim , stype = stype ,

> strata = strata , L = L, m = m, weights = weights ,

> ran.gen = ran.gen , mle=mle , ...)

> foreach(j=icount(chunks), .inorder=FALSE , .combine=combo ,

+ .init=binit , .packages=c("boot","foreach"),

+ .multicombine=TRUE , .verbose=verbose) %dopar% {

> if(j== chunks) RB <- RB + Rm1 %% chunks

> res <- boot(data , statistic , RB, sim = sim , stype = stype ,

> strata = strata , L = L, m = m, weights = weights ,

> ran.gen = ran.gen , mle=mle , ...)

> list(t=res$t)

> }

> }

9

The doRedis Package

4.1 Redis Key Organization

The “work queue” name specified in the registerDoRedis and redisWorker functions is used as
the root name for a family of Redis keys used to organize computation. Figure 2 illustrates example
Redis keys used by a master and worker R processes, described in detail below.

Figure 2: Example doRedis keys

The name of the work queue illustrated in Figure 2 is “jobs.” The corresponding Redis key is
also named “jobs” and it’s a Redis list value type (that is, a queue). Such a queue can be set up,
for example, with registerDoRedis(queue="jobs").

Along with the work queue, a counter key named “jobs:counter” is set up to enumerate jobs. The
key is atomically incremented by Redis with each new job. Removal of “jobs:counter” key serves
as a signal that the work queue has been removed, for example with the removeQueue("jobs")

function. After this happens, any workers listening on the queue will terminate.

foreach assigns every job an R environment with state required to execute the loop expression.
The example in Figure 2 illustrates a job environment for the “jobs” queue and job number 1 called
“jobs:1.env.” R worker processes working on job number 1 in the “jobs” queue will download this
environment key once (independently of the number of tasks they run for the job).

All of the tasks for the job number 1 in the “jobs” queue are placed in a Redis key called “jobs:1“
in Figure 2. The Redis value type associated with this key is a hash table. Hash table entries are
named by task number (1, 2, ...) and the hash table values contain the foreach loop parameters
associated with the task.

10

The doRedis Package

The foreach loop performs the following steps to create a new job in the “jobs” queue consisting
of n tasks:

1. Increment “jobs:count”, recording the new job number (say, job number 1 for example).

2. Create and upload the “jobs:1.env” job environment.

3. Populate the n tasks in the “jobs:1” hash table with the foreach loop parameters for each
task.

4. Push n copies of the job number to the “jobs” queue to announce the new job with n tasks.

R workers listen on the “jobs” queue for new jobs. It’s a blocking queue, but the workers period-
ically time out. After each time out they check to see if the “jobs:counter” key still exists, and if it
doesn’t they terminate. If it’s still there, they loop and listen again for jobs.

When a job announcement arrives, a worker downloads the new job number from the “jobs”
queue. The worker then:

1. Checks the job number to see if it already has the job environment. If it doesn’t it downloads
it (from “jobs:1.env” in the example).

2. Calls the getTask function defined in the job environment to get a task. By default, this
function pulls tasks in order from the associated job task hash table (“jobs:1” in Figure 2).
The function can be customized to do more (see the advanced examples topic in the sequel).

3. Upon successfully downloading a task, Redis creates a task start key that indicates that the
task is being processed. The example in Figure 2 illustrates a task key called “jobs:1.start.5”
indicating task number 5 of job number 1 in the jobs queue.

4. The R worker process maintains a task liveness key, illustrated in Figure 2 as “jobs:1.alive.5”.

5. When a task completes, the worker places the result in the job result queue, shown in Figure
2 as “jobs:1.results”, and then removes its corresponding start and alive keys.

Meanwhile, the R master process is listening for results on the job result queue, shown in Figure
2 as “jobs.1.results.” Results arrive from the workers as R lists of the form list(id=result), where
id corresponds to the task ID number and result to the computed task result.

4.2 Worker Fault Detection and Recovery

While running, each task is associated with two keys described in the last section: a task “started”
key and a task“alive”key. The“started”key is normally created by Redis when a task is downloaded.

11

The doRedis Package

The “alive” key is a Redis ephemeral key with a relatively short time out (after which it disappears).
The R worker processes maintain background threads that keep the ephemeral “alive” key active
while the job is being run. If for some reason the R worker process crashes, or the work system
crashes or reboots, or network fails, then the “alive” key will time out and be removed from Redis.

After foreach sets up a job, the master R process listens for results on the associated job results
queue. It’s a blocking read, but the master R process periodically times out. After each time out,
the master examines all the“started”and“alive”keys associated with the job. If it finds a mismatch,
the master R process assumes that task has failed and:

1. resubmits the task in the corresponding job tasks hash table;

2. announces another task for this job in the job queue.

It’s possible that a wayward R worker process might return after its task has been declared lost.
In such cases, results for tasks might be returned more than once in the result queue, but doRedis
is prepared for this and simply discards repeated results.

4.3 Random Number Generator Seeds

The initialization of pseudorandom number generators is an important consideration, especially
when running simulations in parallel. Each foreach loop iteration (task) is assigned a number in
order from the sequence 1, 2, By default, doRedis workers initialize the seed of their random
number generator with a multiple of the first task number they receive. The multiple is chosen to
very widely separate seed initialization values. This simple scheme is sufficient for many problems,
and comparable to the initialization scheme used by many other parallel back ends.

Listing˜7: User-defined RNG initialization

First , use the default initialization:

> startLocalWorkers(n=5,queue="jobs")

> registerDoRedis ("jobs")

> foreach(j=1:5 ,. combine ="c") %dopar% runif (1)

[1] 0.27572951 0.62581389 0.90845008 0.49669130 0.06106442

Now , let ′ s make all the workers use the same random seed initialization:

> set.seed.worker <- function(n) set.seed (55)

> foreach(j=1:5 ,. combine ="c",.export ="set.seed.worker ") %dopar% runif (1)

[1] 0.5478135 0.5478135 0.5478135 0.5478135 0.5478135

The doRedis package includes a mechanism to define an arbitrary random seed initialization
function. Such a function could be used, for example, with the SPRNG library or with the doRNG

package for foreach.

12

The doRedis Package

The user-defined random seed initialization function must be called set.seed.worker, take one
argument and must be exported to the workers explicitly in the foreach loop. The example shown
in Listing 7 illustrates a simple user-defined seed function.

4.4 Known Problems and Limitations

If CTRL+C is pressed while a foreach loop is running, connection to the Redis server may be lost
or enter an undefined state. An R session can reset connection to a Redis server at any time by
issuing redisClose() followed by re-registering the doRedis back end.

Redis limits database values to less than 2 GB. Neither the foreach loop parameters nor the job
environment may exceed this size. If you need to work on chunks of data larger than this, see the
Advanced Topics section for examples of working on already distributed data in place.

5 Advanced Topics

Let’s start this section by dealing with the 2 GB Redis value size limit. Problems will come along
in which you’ll need to get more than 2 GB of data to the R worker processes. There are several
approaches that one might take:

1. Distribute the data outside of Redis, for example through a shared distributed file system like
PVFS or Lustre.

2. Break the data up into chunks that each fit into Redis and use Redis to distribute the data.

The first approach is often a good one, but is outside of the scope of this vignette. We illustrate the
second approach in the following example. For the purposes of illustration, the example matrix is
tiny and we break it up into only two chunks. But the idea extends directly to very large problems.

The point of the example in Listing 8 is that the workers explicitly download just their portion
of the data inside the foreach loop. This avoids putting the data into the exported R environment,
which could exceed the Redis 2 GB value size limit. The example also avoids sending data to workers
that they don’t need. Each worker downloads just the data it needs and nothing more.

5.1 Custom task assignment

The example shown in Listing 8 presents one way to distribute just the data needed to each task.
But what if we need to repeat the foreach loop in Listing 8, for example in the running of an
iterative method? It would be nice if the workers could cache their chunks of data locally and
simply re-use that without fetching new data.

13

The doRedis Package

Listing˜8: Explicitly breaking a problem up into chunks

> registerDoRedis ("jobs")

> set.seed (1)

> A <- matrix(rnorm (100), nrow =10) # (Imagine that A is really big.)

Partition the matrix into parts small enough to fit into Redis values

(less than 2GB). We partition our example matrix into two parts:

> A1 <- A[1:5,] # First five rows

> A2 <- A[6:10 ,] # Last five rows

Let ′ s explicitly assign these sub -matrices as Redis values. Manually breaking

up the data like this helps avoid putting too much data in the R environment

exported by foreach.

> redisSet ("A1", A1)

> redisSet ("A2", A2)

> ans <- foreach(j=1:2, .combine=c) %dopar% {

> chunk <- sprintf ("A%d",j)

> mychunk <- redisGet(chunk)

> sum(mychunk)

> }

> print(ans)

[1] 6.216482 4.672254

The default doRedis approach assigns work to workers on a first-come, first-served basis. But
it also allows for custom task assignment, for example to align tasks with existing cached data on
workers. Custom task assignment can also be used to allocate tasks based on distance to already
distributed data.

Let’s recall how tasks are assigned to a worker R process by doRedis (refer to Figure 2):

1. The worker waits for a job announcement with a blocking read on the job work queue (“jobs”
in Figure 2).

2. After a job ID is removed from the work queue, the worker downloads the job R environment
value (“jobs:1.env”).

3. The environment contains a function called getTask. The worker invokes this function with
the work queue name, the job ID, and a worker “tag” value to get a task.

4. If a task was obtained, the worker executes it, placing the result in the result queue
(“jobs.1.results”). Otherwise the worker replaces the obtained job ID into the work queue

14

The doRedis Package

and repeats (see below for a discussion of this exceptional case).

Customization of task assignment boils down to supplying a custom getTask and setting a “tag”
value in the workers.

5.1.1 Setting worker tags

A “tag” is a character string that workers report to their getTask functions. Tags can be any
character string, and they do not need to be unique. Workers report their system host names by
default. Interesting tag possibilities are chunk number and worker I.P. address.

Set tags with the setTag function. This step is usually done once in the first foreach loop.
Once a tag is set, it remains in force until reset (the tag value will not vary from job to job).

5.1.2 Customizing the getTask function

The task assignment decision is made by the Redis server. The default getTask function specifies
a Lua script that is run by Redis. It ignores the “tag” argument supplied by the workers. Here it is:
Note that it’s important for the getTask function to set the task started key (the Lua statement

Listing˜9: Default getTask function

getTask <- function(queue , job_id , ...)

{

key <- sprintf ("

redisEval ("local x=redis.call(′ hkeys ′ ,KEYS [1])[1];

if x==nil then return nil end;

local ans=redis.call(′ hget ′ ,KEYS[1],x);

redis.call(′ set ′ , KEYS [1] .. ′ .start. ′ .. x, x);

redis.call(′ hdel ′ ,KEYS[1],x);i

return ans",key)

}

redis.call('set', KEYS[1] .. '.start.' .. x, x)). For reliable operation, this should be set
by Redis and not left up to the R worker.

Let’s modify the example in Listing 8 to preferentially assign work to workers that already
have locally cached data. With these modifications in place, the foreach loop in Listing 8 can
be repeated without incurring any new data movement costs as long as the doRedis worker pool
remains constant.

The custom myGetTask function shown in Listing 10 first tries to assign a specific task number
requested by the worker via its tag. If that fails, it assigns the first available task or NULL if there

15

The doRedis Package

Listing˜10: Custom getTask function

> myGetTask <- function(queue , job_id , tag , ...)

{

The default task Redis hash map is labeled queue:job_id:

> key <- sprintf ("%s:%s",queue , job_id)

The worker tag is passed in to the Redis Lua interpreter as ARGV [1].

See ?redisEval for details.

> redisEval ("local x=redis.call(′ hkeys ′ ,KEYS [1])[tonumber(ARGV [1])];

+ if x==nil then x=redis.call(′ hkeys ′ ,KEYS [1])[1]; end;

+ if x==nil then return nil; end;

+ local ans=redis.call(′ hget ′ ,KEYS[1],x);

+ redis.call(′ set ′ , KEYS [1] .. ′ .start. ′ .. x, x);

+ redis.call(′ hdel ′ ,KEYS[1],x);

+ return ans",key ,FALSE ,tag)

}

aren’t any tasks. Listing 11 shows a modified version of the foreach loop from example 8. The
modifications add the following:

� Cache the data in the worker’s R global environment the first time run.

� Assign a tag corresponding to the cached data chunk.

� Use the custom myGetTask function from Listing 10.

� Add some debugging output to help understand what’s happening.

Let’s say that the example shown in Listing 11 is run using the “jobs” work queue with two local
doRedis workers, for example with: The first time you run the example foreach loop in Listing
11, you’ll see output similar to that shown in Listing 13 below. If you repeat the foreach loop
in Listing 11, you’ll see output similar to that shown below in Listing 14, which shows that the
workers are using their cached data. You can repeat the foreach loop as many times as you like
and the output should remain constant.

Note that, even if one of the workers quits or crashes, the remaining worker will be assigned work
to finish the job. And, the method still accommodates additional workers coming on line at any
time.

5.2 Things to watch out for

foreach submits all tasks associated with one job in a single Redis transaction. This is important
in light of the custom task pulling example in Listing 10. We’d like to make sure that all the tasks
are available before doling out work to avoid prematurely assigning a task to the wrong worker.

However, that means that if the foreach loop parameterization contains a lot of data, there can

16

The doRedis Package

Listing˜11: Modified foreach loop

> ans <-

> foreach(j=1:2, .options.redis=list(getTask=myGetTask)) %dopar% {

> chunk <- sprintf ("A%d",j)

> log <- paste ("My job is to sum chunk ",chunk)

> log <- paste(log ,"My tag ID is ",doRedis :::. getTag ())

Check if we have a cached copy of the chunk

> if(exists(chunk))

> {

> log <- paste(log ,"I ′ ve already got this chunk ...")

> mychunk <- get(chunk)

> return(list(sum=sum(mychunk), log=log))

> }

We don ′ t have it cached , download it and cache it locally ...

> log <- paste(log ," Downloading chunk",chunk)

> setTag(j) # Set our tag!

> assign(chunk , redisGet(chunk), envir=globalenv ())

> mychunk <- get(chunk , envir=globalenv ())

> list(sum=sum(mychunk), log=log)

> }

> print(ans)

Listing˜12: Starting two local R workers

> library (" doRedis ")

> registerDoRedis ("jobs")

> startLocalWorkers(n=2, queue="jobs")

Listing˜13: First foreach loop run

[[1]]

[[1]] $sum

[1] 0

[[1]] $log

[1] "My job is to sum chunk A1 My tag ID is localhost Downloading chunk A1"

[[2]]

[[2]] $sum

[1] 0

[[2]] $log

[1] "My job is to sum chunk A2 My tag ID is localhost Downloading chunk A2"

17

The doRedis Package

Listing˜14: Repeated foreach loop runs

[[1]]

[[1]] $sum

[1] 0

[[1]] $log

[1] "My job is to sum chunk A1 My tag ID is 1 I ′ ve already got this chunk ..."

[[2]]

[[2]] $sum

[1] 0

[[2]] $log

[1] "My job is to sum chunk A2 My tag ID is 2 I ′ ve already got this chunk ..."

be a significant lag before starting the work. Avoid loop parameterizations containing lots of data.
It’s a better idea to manually break up data into Redis keys as shown in the example in Listing 8.

It’s possible that a worker can remove a job announcement from a work queue without requesting
a task via getTask from the job’s task set. That’s a problem. Another problem already discussed
in the fault tolerance section occurs when the number of started tasks does not match the number
of alive tasks. The master process periodically checks two things:

1. Number of started tasks = number of alive tasks (fault check)

2. queued + started + finished = total

If item 2 fails, then the queue is out of balance and the master R program resubmits the missing
number of task entries. In either case, it’s possible that a rogue worker process tricks us and
completes work that apparently failed. The master R program running the foreach loop throws
away replicated task results, keeping only the first result to arrive.

5.3 worker.init

If you export a function named worker.init that takes no arguments, it will be run by the workers
once just after downloading a new job environment. This is a generic function that may contain
any worker initialization code that may not be appropriate for the body of the foreach loop. The
worker.init function is rarely needed.

18

	Introduction
	Why doRedis?

	Obtaining and Configuring the Redis server
	doRedis Examples
	A Really Simple Example
	Fault tolerance
	Dynamic Worker Pools and Heterogeneous Workers
	A Parallel boot Function

	Technical Details
	Redis Key Organization
	Worker Fault Detection and Recovery
	Random Number Generator Seeds
	Known Problems and Limitations

	Advanced Topics
	Custom task assignment
	Setting worker tags
	Customizing the getTask function

	Things to watch out for
	worker.init

