knitr::opts_chunk$set(echo = TRUE) require(tidyverse) require(readxl) require(sringr) require(ggplot2) source("../R/general_helper_functions.R")
aquastat <- load_csv_from_googledrive("10H8QEJW7QCuAYn4OBMA-h58dE0FckTeq") unique(aquastat$`Variable Name`)
Let's start by looking at some of the national level variables that get at total area devoted to Ag
aquastat %>% filter(`Variable Name` %in% c("Arable land area", "Permanent crops area", "% of total country area cultivated", "Total agricultural water managed area")) %>% ggplot(aes(x = Year, y = Value, col = Area)) + geom_line(size = 1.2) + theme_classic() + facet_wrap(.~`Variable Name`, ncol = 2, nrow = 2, scales = "free_y") + labs(col = "Nation") + theme(axis.text = element_text(size = 12), axis.title = element_text(size = 14), legend.position = "bottom")
who_schisto <- load_csv_from_googledrive("1twn-KM3AagRMdCjj4YgaVIotxZL-o_58") who_schisto %>% dplyr::select(Country, Year, `Population requiring PC for SCH annually`, `National coverage`) %>% mutate(`Population requiring PC for SCH annually` = as.numeric(gsub(",","",`Population requiring PC for SCH annually`)), `National coverage` = as.numeric(gsub("%","",`National coverage`))) %>% gather("Variable", "Value", `Population requiring PC for SCH annually`:`National coverage`) %>% ggplot(aes(x = Year, y = Value, col = Country)) + geom_line(size = 1.2) + theme_classic() + facet_wrap(.~Variable, nrow = 2, scales = "free_y") + labs(col = "Nation") + theme(axis.text = element_text(size = 12), axis.title = element_text(size = 14), legend.position = "bottom")
#Download spreadsheet directly from github repository tmp <- tempfile(fileext = ".xlsx") download.file("https://github.com/EvansSchoolPolicyAnalysisAndResearch/335_Data-Dissemination/raw/master/EPAR_UW_335_AgDev_Indicator_Estimates.xlsx", destfile = tmp, mode = "wb") epar <- read_xlsx(tmp, sheet = "Estimates by Instrument") epar %>% filter(`Variable Name (in the .dta file)` == "use_inorg_fert" & Geography %in% c("Ethiopia", "Nigeria", "Tanzania")) %>% mutate(year = as.numeric(str_split(Year, "-", simplify = T)[,1])) %>% ggplot(aes(x = year, y = Mean, col = Geography)) + geom_line(size = 1.2) + ylim(c(0,1)) + theme_classic() + labs(x = "Year", y = "Proportion households using inorganic fertilizer", col = "Nation")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.