#' Load LAGOSUS data from disk
#'
#' A wrapper for \code{\link[utils]{read.table}} with a default set of parameters.
#'
#' @noRd
#' @param file_name character
#' @param sep character separator (tab or comma separated values)
#' @param dictionary data.frame linking variable_name(s) to data_type(s)
#' @param parse_units logical, coerce all fields according to the dictionary?
#' @param ... Options passed on to \code{\link[utils]{read.table}}
#'
#' @importFrom stats setNames
#'
#' @return data.frame
#' @examples \dontrun{
#' locus_dictionary <- load_lagos_txt(
#' list.files("~/Downloads/LAGOS-US-LOCUS-EXPORT",
#' pattern = "data_dictionary.*.csv",
#' include.dirs = TRUE, full.names = TRUE),
#' na.strings = c(""), sep = ",")
#' }
load_lagos_txt <- function(file_name, sep = "\t", dictionary = NA, parse_units = TRUE, ...){
if (!inherits(dictionary, "data.frame")) {
res <- suppressWarnings(
read.table(file_name, header = TRUE, sep = sep, quote = "\"",
dec = ".", strip.white = TRUE, comment.char = "",
..., stringsAsFactors = FALSE))
# dplyr::filter(res, variable_name == "lake_shorelinedevfactor")
}else{
res <- suppressWarnings(
read.table(file_name, header = TRUE, sep = sep, quote = "\"",
dec = ".", strip.white = TRUE, comment.char = "",
colClasses = "character",
..., stringsAsFactors = FALSE))
if(parse_units){
# read column types from data dictionary pass to colClasses argument
# possible colClasses : (logical, integer, numeric, complex, character, raw)
dictionary <- dplyr::filter(dictionary, .data$table_name ==
stringr::str_extract(basename(file_name), "^.*(?=.csv)"))
colClasses_key <- data.frame(
data_type = c("char", "factor", "int", "numeric", "date"),
r_type = c("character", "factor", "integer", "numeric", "character"),
readr_type = c("c", "f", "i", "d", "c"),
stringsAsFactors = FALSE)
colClasses <- data.frame(variable_name = names(res),
stringsAsFactors = FALSE) %>%
dplyr::left_join(dplyr::select(dictionary, .data$variable_name, .data$data_type),
by = "variable_name") %>%
dplyr::left_join(colClasses_key,
by = "data_type") %>%
dplyr::pull(.data$r_type)
colClasses <- setNames(colClasses, names(res))
if(any(is.na(colClasses))){
stop(
paste0("Mismatch between the data dictionary and ",
paste0(names(colClasses[is.na(colClasses)]), collapse = ", "),
" in ", file_name)
)
}
res <- res %>%
dplyr::mutate(
dplyr::across(names(colClasses[colClasses == "numeric"]), as.numeric)) %>%
dplyr::mutate(
dplyr::across(names(colClasses[colClasses == "integer"]), as.integer)) %>%
dplyr::mutate(
dplyr::across(names(colClasses[colClasses == "factor"]), as.factor))
}
}
res
}
#' @importFrom curl curl_download
get_if_not_exists <- function(url, destfile, overwrite){
if(!file.exists(destfile) | overwrite){
curl::curl_download(url, destfile)
}else{
message(paste0("A local copy of ", url, " already exists on disk"))
}
}
stop_if_not_exists <- function(src_path) {
if(!file.exists(src_path)){
stop(paste0("Dataset not found at: ", src_path, "\n Try running the `lagosne_get` command."))
}
}
#' Return the cross-platform data path designated for LAGOSUS.
#'
#' @export
lagosus_path <- function() paste0(rappdirs::user_data_dir(appname = "LAGOSUS",
appauthor = "LAGOSUS"), .Platform$file.sep)
lagos_names <- function(dt) purrr::map(dt, names)
# unlist(lapply(dt, function(x) length(grep("connect", names(x))))) # search tables for column
#' Query LAGOSUS names
#'
#' Return a vector of table names whose associated tables have
#' columns that grep to query.
#'
#' @param dt data.frame output of \code{\link[LAGOSUS]{lagosus_load}}
#' @param grep_string character search string to grep to table column names
#' @param scale character filter results by one of:
#' \itemize{
#' \item county
#' \item edu
#' \item hu4
#' \item hu8
#' \item hu12
#' \item state
#' }
#' @export
#' @examples \dontrun{
#' lg <- lagosus_load(c("locus", "depth"))
#' query_lagos_names("zoneid", dt = lg)
#' query_lagos_names("ws_meanwidth", dt = lg)
#' query_lagos_names("max_depth_m", dt = lg)
#' }
query_lagos_names <- function(grep_string, scale = NA, dt){
dt_names <- unlist(lapply(dt, lagos_names), recursive = FALSE)
names_matches <- unlist(
lapply(dt_names,
function(x) length(grep(grep_string, x)) > 0)
)
res <- names(dt_names)[names_matches]
res <- stringr::str_extract(res, "(?<=\\.)\\w+")
res_filtered <- res[grep(scale, res)]
if(!is.na(scale)){
if(length(res_filtered) < 1 & length(res) > 1){
stop(paste0("The '", scale, "' scale does not exist!"))
}
res_filtered
}else{
res
}
}
#' Query column names
#'
#' Return a vector of column names, given a table name and grep query string.
#'
#' @param dt data.frame
#' @param table_name character
#' @param grep_string character
#' @examples \dontrun{
#' dt <- lagosne_load("1.087.3")
#' query_column_names(dt, "hu4.chag", "_dep_")
#' query_column_names(dt, "county.chag", "baseflowindex")
#' }
query_column_names <- function(dt, table_name, grep_string){
dt_names <- lagos_names(dt)
dt_names[table_name][[1]][grep(grep_string, dt_names[table_name][[1]])]
}
#' Query column keywords
#'
#' Return a vector of column names, given a table name and keyword string.
#'
#' @param dt data.frame
#' @param table_name character
#' @param keyword_string character
#' @examples \dontrun{
#' dt <- lagosne_load("1.087.3")
#' query_column_keywords(dt, "hu12.chag", "hydrology")
#' }
query_column_keywords <- function(dt, table_name, keyword_string){
if(!(keyword_string %in% keyword_partial_key()[,1])){
stop("keyword not found in keyword_partial_key()")
}
if(!(table_name %in% names(dt))){
stop("table not found in 'dt'")
}
dt_names <- lagos_names(dt)
match <- keyword_partial_key()[
keyword_partial_key()[,1] %in% keyword_string, 2]
unlist(lapply(match,
function(x) dt_names[table_name][[1]][
grep(x, dt_names[table_name][[1]])
]))
}
#' @importFrom curl curl_fetch_memory
#' @importFrom stringr str_extract
get_file_names <- function(url) {
handle <- curl::new_handle(nobody = TRUE)
headers <- curl::parse_headers(
curl::curl_fetch_memory(url, handle)$headers)
fname <- headers[grep("filename", headers)]
res <- stringr::str_extract(fname, "(?<=\\=)(.*?)\\.csv")
gsub('\\"', "", res)
}
get_lagos_module <- function(edi_url, pasta_url, folder_name, overwrite){
files <- suppressWarnings(paste0(edi_url, "&entityid=",
readLines(pasta_url)))
file_names <- sapply(files, get_file_names)
files <- files[!is.na(file_names)]
file_names <- file_names[!is.na(file_names)]
local_dir <- file.path(tempdir(), folder_name)
dir.create(local_dir, showWarnings = FALSE)
file_paths <- file.path(local_dir, file_names)
invisible(lapply(seq_len(length(files)),
function(i) {
message(paste0("Downloading ", file_names[i], " ..."))
get_if_not_exists(files[i], file_paths[i], overwrite)
}))
local_dir
}
# from the Hmisc package
capitalize <- function(string) {
capped <- grep("^[A-Z]", string, invert = TRUE)
substr(string[capped], 1, 1) <- toupper(substr(string[capped], 1, 1))
return(string)
}
pad_huc_ids <- function(dt, col_name, len){
id_num <- as.numeric(dt[, col_name])
res <- formatC(id_num, width = len, digits = 0, format = "f", flag = "0")
dt[,col_name] <- as.character(res)
dt
}
format_nonscientific <- function(x){
if(is.na(as.numeric(x))){
x
}else{
trimws(
format(
as.numeric(x), scientific = FALSE, drop0trailing = TRUE)
)
}
}
tidy_name_prefixes <- function(nms){
prefixes_key <- data.frame(prefix = c("ws_", "hu4_", "iws_", "state_",
"nhd_", "hu8_", "hu12_",
"edu_", "county_", "hu6_",
"^lakes_",
"tp_", "toc_", "tn_", "tkn_",
"tdp_", "tdn_", "srp_",
"secchi_", "no2no3_", "no2_",
"nh4_", "doc_", "dkn_", "colort_",
"colora_", "chla_", "ton_"),
stringsAsFactors = FALSE)
prefixes_key$replacement <- rep("", nrow(prefixes_key))
prefix_matches <- list()
for(i in seq_along(prefixes_key$prefix)){
prefix_matches[[i]] <- stringr::str_which(
nms$raw, prefixes_key$prefix[i])
}
prefix_matches <- tidyr::unnest(tibble::enframe(prefix_matches))
prefix_matches <- apply(prefix_matches, 1, function(x)
c(nms$raw[x[2]], prefixes_key$prefix[x[1]]))
prefix_matches <- data.frame(t(prefix_matches), stringsAsFactors = FALSE)
if(nrow(prefix_matches) != 0 & ncol(prefix_matches) != 0){
names(prefix_matches) <- c("raw", "prefix")
nms <- merge(nms, prefix_matches, all.x = TRUE)
}
for(i in seq_along(nms$formatted[!is.na(nms$prefix)])){
nms$formatted[!is.na(nms$prefix)][i] <-
gsub(
nms$prefix[!is.na(nms$prefix)][i], "",
nms$raw[!is.na(nms$prefix)][i])
}
nms$formatted[is.na(nms$formatted)] <- nms$raw[is.na(nms$formatted)]
nms
}
key_names <- function(nms){
# match cleaned names to a key
name_key <- data.frame(formatted = c("ha", "perimkm",
"maxdepth", "lake_perim_meters",
"lakeareaha", "samplemonth",
"sampleyear", "sampledate",
"meandepth", "zoneid"),
cleaned = c("Area (ha)", "Perimeter (km)",
"Max Depth", "Perimeter (m)",
"Lake Area (ha)", "Month",
"Year", "Date",
"Mean Depth", "ID"),
stringsAsFactors = FALSE)
nms <- merge(nms, name_key, all.x = TRUE)
nms$formatted[is.na(nms$formatted)] <-
nms$raw[is.na(nms$formatted)]
nms$cleaned[is.na(nms$cleaned)] <- nms$formatted[is.na(nms$cleaned)]
nms
}
tidy_name_suffixes <- function(nms){
# match suffixes to a key
suffixes_key <- data.frame(raw = c("_count$", "_ha$", "_km$",
"_m$", "_pct$", "_mperha$",
"_pointsperha$", "_pointspersqkm$",
"_pointcount$"),
formatted = c(" (n)", " (ha)", " (km)",
" (m)", " (%)", " (n/ha)",
" (n/ha)", " (n/km2)", " (n)"),
stringsAsFactors = FALSE)
for(i in seq_along(suffixes_key$raw)){
nms$cleaned <- gsub(suffixes_key$raw[i],
suffixes_key$formatted[i],
nms$cleaned, fixed = FALSE)
}
nms
}
url_exists <- function(url){
handle <- curl::new_handle(nobody = TRUE)
tryCatch(
length(curl::parse_headers(
curl::curl_fetch_memory(url, handle)$headers)) > 0,
error = function(e) FALSE
)
}
key_state <- function(x){
key <- data.frame(state.abb = datasets::state.abb,
state.name = datasets::state.name,
stringsAsFactors = FALSE)
dplyr::left_join(x, key,
by = c("state.name"))
}
# copied from jsta::tabular
tabular <- function(df, ...) {
stopifnot(is.data.frame(df))
align <- function(x) if (is.numeric(x)) "r" else "l"
col_align <- vapply(df, align, character(1))
cols <- lapply(df, format, ...)
contents <- do.call("paste",
c(cols, list(sep = " \\tab ", collapse = "\\cr\n ")))
col_names <- paste0("\\bold{",
do.call("paste",
c(names(df), list(sep = "} \\tab \\bold{", collapse = "\\cr\n "))),
"} \\cr")
paste("\\tabular{", paste(col_align, collapse = ""), "}{\n",
col_names,
"\n",
contents, "\n}\n", sep = "")
}
# get_table_metadata("depth", "depth")
# get_table_metadata("limno", "site_chemicalphysical")
#' @importFrom snakecase to_any_case
get_table_metadata <- function(module_name_, table_name_){
# module_name_ <- "depth"
# table_name_ <- "lake_depth"
lg <- lagosus_load(modules = c(module_name_))
dt_raw <- lg[[module_name_]]
dt_raw <- dt_raw[[grep("dictionary", names(dt_raw))]]
dt <- dt_raw[stringr::str_detect(dt_raw$table_name, table_name_),] %>%
dplyr::select(matches("variable_name"), "variable_description", "units")
dt <- setNames(dt,
snakecase::to_any_case(names(dt), "sentence"))
dt <- dplyr::mutate(dt, dplyr::across(dplyr::everything(), ~
dplyr::case_when(. == "NA"~ "",
is.na(.) ~ "",
TRUE ~ .)))
paste0(readLines(textConnection(tabular(dt))))
}
albers_conic <- function(){
# Albers Equal Area Conic
"+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23 +lon_0=-96 +x_0=0 +y_0=0 +datum=NAD83 +units=m +no_defs"
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.