#' A function to simulate MV norm data
#'
#' See mvtnorm package for details
#'
#' @param
#' n number of samples
#' @param
#' mean mean vector
#' @param
#' sigma vcov matrix
#' @param
#' method method to use
#' @param
#' pre0.9_9994 see mvtnorm
#' @param
#' checkSymmetry see mvtnorm
#' @return MV normal samples
#' @export
rmvnorm = function (n, mean = rep(0, nrow(sigma)), sigma = diag(length(mean)),
method = c("eigen", "svd", "chol"), pre0.9_9994 = FALSE,
checkSymmetry = TRUE)
{
if (checkSymmetry && !isSymmetric(sigma, tol = sqrt(.Machine$double.eps),
check.attributes = FALSE)) {
stop("sigma must be a symmetric matrix")
}
if (length(mean) != nrow(sigma))
stop("mean and sigma have non-conforming size")
method <- match.arg(method)
R <- if (method == "eigen") {
ev <- eigen(sigma, symmetric = TRUE)
if (!all(ev$values >= -sqrt(.Machine$double.eps) * abs(ev$values[1]))) {
warning("sigma is numerically not positive semidefinite")
}
t(ev$vectors %*% (t(ev$vectors) * sqrt(pmax(ev$values,
0))))
}
else if (method == "svd") {
s. <- svd(sigma)
if (!all(s.$d >= -sqrt(.Machine$double.eps) * abs(s.$d[1]))) {
warning("sigma is numerically not positive semidefinite")
}
t(s.$v %*% (t(s.$u) * sqrt(pmax(s.$d, 0))))
}
else if (method == "chol") {
R <- chol(sigma, pivot = TRUE)
R[, order(attr(R, "pivot"))]
}
retval <- matrix(rnorm(n * ncol(sigma)), nrow = n, byrow = !pre0.9_9994) %*%
R
retval <- sweep(retval, 2, mean, "+")
colnames(retval) <- names(mean)
retval
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.