#' Organize Stan output and provide summaries of model parameters
#'
#' This is a function to organize Stan output and provide summaries of key model parameters
#'
#' @param
#' input A STRAND model object, obtained by fitting a latent network model.
#' @param
#' include_samples An indicator for the user to specify where raw samples, or only the summary statistics should be returned. Samples can take up a lot of space.
#' @param
#' HPDI Highest Posterior Density Interval. Ranges in (0,1).
#' @return A STRAND results object including summary table, a summary list, and samples.
#' @export
#' @examples
#' \dontrun{
#' res = summarize_lnm_results(input=fit)
#' }
#'
# Should change to allow users to specify HPDI intervals
summarize_lnm_results = function(input, include_samples=TRUE, HPDI=0.9){
if(attributes(input)$class != "STRAND Model Object"){
stop("summarize_lnm_results() requires a fitted object of class: STRAND Model Object. Please use fit_latent_network_model() to run your model.")
}
if(attributes(input)$fit_type != "mcmc"){
stop("Fitted results can only be reorganized for STRAND model objects fit using MCMC. Variational inference or optimization can be used in Stan
during experimental model runs, but final inferences should be based on MCMC sampling.")
}
###################################################### Create samples
stanfit = posterior::as_draws_rvars(input$fit$draws())
################### Measurement model
false_positive_rate = posterior::draws_of(stanfit$"false_positive_rate")
recall_of_true_ties = posterior::draws_of(stanfit$"recall_of_true_ties")
theta_mean = posterior::draws_of(stanfit$"theta_mean")
fpr_sigma = posterior::draws_of(stanfit$"fpr_sigma")
rtt_sigma = posterior::draws_of(stanfit$"rtt_sigma")
theta_sigma = posterior::draws_of(stanfit$"theta_sigma")
fpr_raw = posterior::draws_of(stanfit$"fpr_raw")
rtt_raw = posterior::draws_of(stanfit$"rtt_raw")
theta_raw = posterior::draws_of(stanfit$"theta_raw")
if(dim(input$data$fpr_set)[2]>1)
fpr_effects = posterior::draws_of(stanfit$"fpr_effects")
if(dim(input$data$rtt_set)[2]>1)
rtt_effects = posterior::draws_of(stanfit$"rtt_effects")
if(dim(input$data$theta_set)[2]>1)
theta_effects = posterior::draws_of(stanfit$"theta_effects")
if(dim(input$data$block_set)[2]>0)
block_effects = posterior::draws_of(stanfit$"block_effects")
################### Get index data for block-model samples
block_indexes = c()
block_indexes[1] = 0
for(q in 1:input$data$N_group_vars){
block_indexes[1+q] = input$data$N_groups_per_var[q]*input$data$N_groups_per_var[q] + block_indexes[q]
}
################### Convert the block-model effects into an array form
B = list()
for(q in 1:input$data$N_group_vars){
B[[q]] = array(NA, c(dim(block_effects)[1], input$data$N_groups_per_var[q], input$data$N_groups_per_var[q] ))
for(s in 1:dim(block_effects)[1]){
B[[q]][s,,] = array(block_effects[s,(block_indexes[q]+1):(block_indexes[q+1])], c(input$data$N_groups_per_var[q], input$data$N_groups_per_var[q]))
}
}
################### Network model
sr_sigma = posterior::draws_of(stanfit$"sr_sigma")
sr_L = posterior::draws_of(stanfit$"sr_L")
sr_raw = posterior::draws_of(stanfit$"sr_raw")
dr_L = posterior::draws_of(stanfit$"dr_L")
dr_raw = posterior::draws_of(stanfit$"dr_raw")
dr_sigma = posterior::draws_of(stanfit$"dr_sigma")
if(dim(input$data$focal_set)[2]>1)
focal_effects = posterior::draws_of(stanfit$"focal_effects")
if(dim(input$data$target_set)[2]>1)
target_effects = posterior::draws_of(stanfit$"target_effects")
if(dim(input$data$dyad_set)[3]>1)
dyad_effects = posterior::draws_of(stanfit$"dyad_effects")
measurement_samples = list(
false_positive_rate_intercept=false_positive_rate,
false_positive_rate_sd=fpr_sigma,
false_positive_rate_random_effects=fpr_raw,
recall_of_true_ties_intercept=recall_of_true_ties,
recall_of_true_ties_sd=rtt_sigma,
recall_of_true_ties_random_effects=rtt_raw,
theta_intercept=theta_mean,
theta_sd=theta_sigma,
theta_random_effects=theta_raw
)
if(dim(input$data$fpr_set)[2]>1)
measurement_samples$false_positive_rate_coeffs = fpr_effects
if(dim(input$data$rtt_set)[2]>1)
measurement_samples$recall_of_true_ties_coeffs = rtt_effects
if(dim(input$data$theta_set)[2]>1)
measurement_samples$theta_coeffs = theta_effects
srm_samples = list(
block_parameters=B,
focal_target_sd=sr_sigma,
focal_target_L=sr_L,
focal_target_random_effects=sr_raw,
dyadic_sd = dr_sigma,
dyadic_L = dr_L,
dyadic_random_effects=dr_raw
)
if(dim(input$data$focal_set)[2]>1)
srm_samples$focal_coeffs = focal_effects
if(dim(input$data$target_set)[2]>1)
srm_samples$target_coeffs = target_effects
if(dim(input$data$dyad_set)[3]>1)
srm_samples$dyadic_coeffs = dyad_effects
samples = list(measurement_model_samples=measurement_samples, srm_model_samples=srm_samples)
if(input$return_predicted_network == TRUE){
samples$predicted_network_sample = posterior::draws_of(stanfit$"p_tie_out")
}
###################################################### Create summary stats
sum_stats = function(y, x, z){
bob = rep(NA, 6)
dig = 3
bob[1] = y
bob[2] = round(median(x),dig)
bob[3] = round(HPDI(x, z)[1],dig)
bob[4] = round(HPDI(x, z)[2],dig)
bob[5] = round(mean(x),dig)
bob[6] = round(sd(x),dig)
return(bob)
}
results_list = list()
################### FPR model
Q = dim(input$data$fpr_set)[2]-1
results_fpr = matrix(NA, nrow=(4+(Q*2)), ncol=6)
results_fpr[1,] = sum_stats("false positive rate intercept, layer 1", samples$measurement_model_samples$false_positive_rate_intercept[,1], HPDI)
results_fpr[2,] = sum_stats("false positive rate intercept, layer 2", samples$measurement_model_samples$false_positive_rate_intercept[,2], HPDI)
results_fpr[3,] = sum_stats("false positive rate sd, layer 1", samples$measurement_model_samples$false_positive_rate_sd[,1], HPDI)
results_fpr[4,] = sum_stats("false positive rate sd, layer 2", samples$measurement_model_samples$false_positive_rate_sd[,2], HPDI)
if(Q>0){
coeff_names = colnames(input$data$fpr_set)[-1]
for(i in 1:Q){
results_fpr[4+i,] = sum_stats(paste0("false positive rate coeffs, layer 1, ", coeff_names[i] ), samples$measurement_model_samples$false_positive_rate_coeffs[,1,i], HPDI)
results_fpr[4+i+Q,] = sum_stats(paste0("false positive rate coeffs, layer 2, ", coeff_names[i] ), samples$measurement_model_samples$false_positive_rate_coeffs[,2,i], HPDI)
}
}
results_list[[1]] = results_fpr
################### RTT model
Q = dim(input$data$rtt_set)[2]-1
results_rtt = matrix(NA, nrow=(4+(Q*2)), ncol=6)
results_rtt[1,] = sum_stats("recall rate of true ties intercept, layer 1", samples$measurement_model_samples$recall_of_true_ties_intercept[,1], HPDI)
results_rtt[2,] = sum_stats("recall rate of true ties intercept, layer 2", samples$measurement_model_samples$recall_of_true_ties_intercept[,2], HPDI)
results_rtt[3,] = sum_stats("recall rate of true ties sd, layer 1", samples$measurement_model_samples$recall_of_true_ties_sd[,1], HPDI)
results_rtt[4,] = sum_stats("recall rate of true ties sd, layer 2", samples$measurement_model_samples$recall_of_true_ties_sd[,2], HPDI)
if(Q>0){
coeff_names = colnames(input$data$rtt_set)[-1]
for(i in 1:Q){
results_rtt[4+i,] = sum_stats(paste0("recall rate of true ties coeffs, layer 1, ", coeff_names[i] ), samples$measurement_model_samples$recall_of_true_ties_coeffs[,1,i], HPDI)
results_rtt[4+i+Q,] = sum_stats(paste0("recall rate of true ties coeffs, layer 2, ", coeff_names[i] ), samples$measurement_model_samples$recall_of_true_ties_coeffs[,2,i], HPDI)
}
}
results_list[[2]] = results_rtt
################### Theta model
Q = dim(input$data$theta_set)[2]-1
results_theta = matrix(NA, nrow=(2+(Q)), ncol=6)
results_theta[1,] = sum_stats("theta intercept, layer 1 to 2", c(samples$measurement_model_samples$theta_intercept), HPDI)
results_theta[2,] = sum_stats("theta sd, layer 1 to 2", c(samples$measurement_model_samples$theta_sd), HPDI)
if(Q>0){
coeff_names = colnames(input$data$theta_set)[-1]
for(i in 1:Q){
results_theta[2+i,] = sum_stats(paste0("theta coeffs, layer 1 to 2, ", coeff_names[i] ), samples$measurement_model_samples$theta_coeffs[,i], HPDI)
}
}
results_list[[3]] = results_theta
measurement_results = rbind(results_fpr, results_rtt, results_theta)
################### SRM model
Q1 = dim(input$data$focal_set)[2]-1
Q2 = dim(input$data$target_set)[2]-1
Q3 = dim(input$data$dyad_set)[3]-1
results_srm_focal = matrix(NA, nrow=(1+Q1) , ncol=6)
results_srm_target = matrix(NA, nrow=(1+Q2) , ncol=6)
results_srm_dyadic = matrix(NA, nrow=(1+Q3) , ncol=6)
######### Calculate all focal effects
results_srm_focal[1,] = sum_stats("focal effects sd", samples$srm_model_samples$focal_target_sd[,1], HPDI)
if(Q1>0){
coeff_names = colnames(input$data$focal_set)[-1]
for(i in 1:Q1){
results_srm_focal[1+i,] = sum_stats(paste0("focal effects coeffs (out-degree), ", coeff_names[i] ), samples$srm_model_samples$focal_coeffs[,i], HPDI)
}
}
results_list[[4]] = results_srm_focal
######### Calculate all target effects
results_srm_target[1,] = sum_stats("target effects sd", samples$srm_model_samples$focal_target_sd[,2], HPDI)
if(Q2>0){
coeff_names = colnames(input$data$target_set)[-1]
for(i in 1:Q2){
results_srm_target[1+i,] = sum_stats(paste0("target effects coeffs (in-degree), ", coeff_names[i] ), samples$srm_model_samples$target_coeffs[,i], HPDI)
}
}
results_list[[5]] = results_srm_target
######### Calculate all dyad effects
results_srm_dyadic[1,] = sum_stats("dyadic effects sd", c(samples$srm_model_samples$dyadic_sd), HPDI)
if(Q3>0){
coeff_names = dimnames(input$data$dyad_set)[[3]][-1]
for(i in 1:Q3){
results_srm_dyadic[1+i,] = sum_stats(paste0("dyadic effects coeffs, ", coeff_names[i] ), samples$srm_model_samples$dyadic_coeffs[,i], HPDI)
}
}
results_list[[6]] = results_srm_dyadic
######### Calculate all other effects
results_srm_base = matrix(NA, nrow=2 + dim(block_effects)[2], ncol=6)
results_srm_base[1,] = sum_stats("focal-target effects rho (generalized recipocity)", samples$srm_model_samples$focal_target_L[,2,1], HPDI)
results_srm_base[2,] = sum_stats("dyadic effects rho (dyadic recipocity)", samples$srm_model_samples$dyadic_L[,2,1], HPDI)
group_ids_character_df = cbind(rep("Any",input$data$N_id),attr(input$data, "group_ids_character"))
colnames(group_ids_character_df)[1] = "(Intercept)"
in_IDs = colnames(input$data$block_set)
all_IDs = colnames(group_ids_character_df)
group_ids_character_df = group_ids_character_df[,match(in_IDs, all_IDs), drop = FALSE]
group_id_levels = append("Any", attr(input$data, "group_ids_levels"), 1)
names(group_id_levels)[1]= "(Intercept)"
ticker = 0
for(q in 1:input$data$N_group_vars){
group_ids_character = levels(factor(group_ids_character_df[,q]))
test_sorting = group_id_levels[[which(names(group_id_levels) == colnames(group_ids_character_df)[q])]]
if(all(group_ids_character==test_sorting)==FALSE){
stop("Factors not sorted correctly.")
}
for(b1 in 1:input$data$N_groups_per_var[q]){
for(b2 in 1:input$data$N_groups_per_var[q]){
ticker = ticker + 1
results_srm_base[ 2+ ticker,] = sum_stats(paste0("offset, ", group_ids_character[b1], " to ", group_ids_character[b2]),
samples$srm_model_samples$block_parameters[[q]][,b1,b2], HPDI)
}}
}
results_list[[7]] = results_srm_base
############# Finally, merge all effects into a list
for(i in 1:7)
colnames(results_list[[i]]) = c("Variable", "Median", paste("HPDI", (1-HPDI)/2, sep=":"), paste("HPDI", (1+HPDI)/2, sep=":"), "Mean","SD")
names(results_list) = c("False positive rate", "Recall of true ties", "Theta: question-order effects", "Focal effects: Out-degree", "Target effects: In-degree", "Dyadic effects", "Other estimates")
results_out = rbind(measurement_results, results_srm_focal, results_srm_target,results_srm_dyadic, results_srm_base)
df = data.frame(results_out)
colnames(df) = c("Variable", "Median", paste("HPDI", (1-HPDI)/2, sep=":"), paste("HPDI", (1+HPDI)/2, sep=":"), "Mean","SD")
res_final = list(summary=df, summary_list=results_list)
if(include_samples==TRUE){
res_final$samples=samples
}
print(results_list)
attr(res_final, "class") = "STRAND Results Object"
return(res_final)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.