#' Organize Stan output and provide summaries of model parameters
#'
#' This is a function to organize Stan output and provide summaries of key model parameters
#'
#' @param
#' input A STRAND model object, obtained by fitting a social relations model.
#' @param
#' include_samples An indicator for the user to specify where raw samples, or only the summary statistics should be returned. Samples can take up a lot of space.
#' @param
#' HPDI Highest Posterior Density Interval. Ranges in (0,1).
#' @return A STRAND results object including summary table, a summary list, and samples.
#' @export
#' @examples
#' \dontrun{
#' res = summarize_srm_results(input=fit)
#' }
#'
# Should change to allow users to specify HPDI intervals
summarize_srm_results = function(input, include_samples=TRUE, HPDI=0.9){
if(attributes(input)$class != "STRAND Model Object"){
stop("summarize_srm_results() requires a fitted object of class: STRAND Model Object. Please use fit_social_relations_model() to run your model.")
}
if(attributes(input)$fit_type != "mcmc"){
stop("Fitted results can only be reorganized for STRAND model objects fit using MCMC. Variational inference or optimization can be used in Stan
during experimental model runs, but final inferences should be based on MCMC sampling.")
}
###################################################### Create samples
stanfit = posterior::as_draws_rvars(input$fit$draws())
################### Network model
sr_sigma = posterior::draws_of(stanfit$"sr_sigma")
sr_L = posterior::draws_of(stanfit$"sr_L")
sr_raw = posterior::draws_of(stanfit$"sr_raw")
dr_L = posterior::draws_of(stanfit$"dr_L")
dr_raw = posterior::draws_of(stanfit$"dr_raw")
dr_sigma = posterior::draws_of(stanfit$"dr_sigma")
B = posterior::draws_of(stanfit$"B")
if(dim(input$data$focal_set)[2]>1)
focal_effects = posterior::draws_of(stanfit$"focal_effects")
if(dim(input$data$target_set)[2]>1)
target_effects = posterior::draws_of(stanfit$"target_effects")
if(dim(input$data$dyad_set)[3]>1)
dyad_effects = posterior::draws_of(stanfit$"dyad_effects")
srm_samples = list(
block_parameters=B,
focal_target_sd=sr_sigma,
focal_target_L=sr_L,
focal_target_random_effects=sr_raw,
dyadic_sd = dr_sigma,
dyadic_L = dr_L,
dyadic_random_effects=dr_raw
)
if(dim(input$data$focal_set)[2]>1)
srm_samples$focal_coeffs = focal_effects
if(dim(input$data$target_set)[2]>1)
srm_samples$target_coeffs = target_effects
if(dim(input$data$dyad_set)[3]>1)
srm_samples$dyadic_coeffs = dyad_effects
samples = list(srm_model_samples=srm_samples)
if(input$return_predicted_network == TRUE){
samples$predicted_network_sample = posterior::draws_of(stanfit$"p")
}
###################################################### Create summary stats
sum_stats = function(y, x, z){
bob = rep(NA, 6)
dig = 3
bob[1] = y
bob[2] = round(median(x),dig)
bob[3] = round(HPDI(x, z)[1],dig)
bob[4] = round(HPDI(x, z)[2],dig)
bob[5] = round(mean(x),dig)
bob[6] = round(sd(x),dig)
return(bob)
}
results_list = list()
################### SRM model
Q1 = dim(input$data$focal_set)[2]-1
Q2 = dim(input$data$target_set)[2]-1
Q3 = dim(input$data$dyad_set)[3]-1
results_srm_focal = matrix(NA, nrow=(1+Q1) , ncol=6)
results_srm_target = matrix(NA, nrow=(1+Q2) , ncol=6)
results_srm_dyadic = matrix(NA, nrow=(1+Q3) , ncol=6)
results_srm_focal[1,] = sum_stats("focal effects sd", samples$srm_model_samples$focal_target_sd[,1], HPDI)
if(Q1>0){
coeff_names = colnames(input$data$focal_set)[-1]
for(i in 1:Q1){
results_srm_focal[1+i,] = sum_stats(paste0("focal effects coeffs (out-degree), ", coeff_names[i] ), samples$srm_model_samples$focal_coeffs[,i], HPDI)
}
}
results_list[[1]] = results_srm_focal
results_srm_target[1,] = sum_stats("target effects sd", samples$srm_model_samples$focal_target_sd[,2], HPDI)
if(Q2>0){
coeff_names = colnames(input$data$target_set)[-1]
for(i in 1:Q2){
results_srm_target[1+i,] = sum_stats(paste0("target effects coeffs (in-degree), ", coeff_names[i] ), samples$srm_model_samples$target_coeffs[,i], HPDI)
}
}
results_list[[2]] = results_srm_target
results_srm_dyadic[1,] = sum_stats("dyadic effects sd", c(samples$srm_model_samples$dyadic_sd), HPDI)
if(Q3>0){
coeff_names = dimnames(input$data$dyad_set)[[3]][-1]
for(i in 1:Q3){
results_srm_dyadic[1+i,] = sum_stats(paste0("dyadic effects coeffs, ", coeff_names[i] ), samples$srm_model_samples$dyadic_coeffs[,i], HPDI)
}
}
results_list[[3]] = results_srm_dyadic
results_srm_base = matrix(NA, nrow=3, ncol=6)
results_srm_base[1,] = sum_stats("focal-target effects rho (generalized recipocity)", samples$srm_model_samples$focal_target_L[,2,1], HPDI)
results_srm_base[2,] = sum_stats("dyadic effects rho (dyadic recipocity)", samples$srm_model_samples$dyadic_L[,2,1], HPDI)
results_srm_base[3,] = sum_stats("intercept, any to any", samples$srm_model_samples$block_parameters[,1,1], HPDI)
results_list[[4]] = results_srm_base
for(i in 1:4)
colnames(results_list[[i]]) = c("Variable", "Median", paste("HPDI", (1-HPDI)/2, sep=":"), paste("HPDI", (1+HPDI)/2, sep=":"), "Mean","SD")
names(results_list) = c( "Focal effects: Out-degree", "Target effects: In-degree", "Dyadic effects", "Other estimates")
results_out = rbind( results_srm_focal, results_srm_target,results_srm_dyadic, results_srm_base)
df = data.frame(results_out)
colnames(df) = c("Variable", "Median", paste("HPDI", (1-HPDI)/2, sep=":"), paste("HPDI", (1+HPDI)/2, sep=":"), "Mean","SD")
res_final = list(summary=df, summary_list=results_list)
if(include_samples==TRUE){
res_final$samples=samples
}
print(results_list)
attr(res_final, "class") = "STRAND Results Object"
return(res_final)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.