########################################
#
# Poisson Analyses
#
########################################
# Clear working space
rm(list = ls())
# Load libraries
library(STRAND)
library(ggplot2)
# Load data
data(Bat_Data)
# Number of minutes of blood lickings
nets = list(Lick = round(Bat_Data$Lick/60,0))
# Dyadic variables
dyad = list(Relatedness = Bat_Data$Relatedness,
NoOpportunity = Bat_Data$NoOpportunity
)
# Block variables
group_ids = data.frame(Sex = as.factor(Bat_Data$Individual$Sex))
rownames(group_ids) = rownames(Bat_Data$Lick)
model_dat = make_strand_data(outcome = nets,
block_covariates = group_ids,
individual_covariates = NULL,
dyadic_covariates = dyad,
outcome_mode = "poisson"
)
# Model
fit = fit_block_plus_social_relations_model(data=model_dat,
block_regression = ~ Sex ,
focal_regression = ~ 1,
target_regression = ~ 1,
dyad_regression = ~ NoOpportunity * Relatedness,
mode="mcmc",
stan_mcmc_parameters = list(chains = 1, parallel_chains = 1, refresh = 1,
iter_warmup = 1000, iter_sampling = 1000,
max_treedepth = NULL, adapt_delta = .98)
)
res = summarize_strand_results(fit)
vis_1 = strand_caterpillar_plot(res, submodels=c("Focal effects: Out-degree","Target effects: In-degree","Dyadic effects","Other estimates"), normalized=TRUE, only_slopes=TRUE)
vis_1
#ggsave("Bat_slopes.pdf", vis_1, width=7, height=2.5)
vis_2 = strand_caterpillar_plot(res, submodels=c("Focal effects: Out-degree","Target effects: In-degree","Dyadic effects","Other estimates"), normalized=FALSE, site="XX", only_technicals=TRUE, only_slopes=FALSE)
vis_2
#ggsave("Bat_corr.pdf", vis_2, width=6, height=2.5)
############################################################### To compute contrasts with new tools, do this:
process_block_parameters(input=fit, focal="Female to Female", base="Male to Female", HPDI=0.9)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.