
Racing for Unbalanced Methods Selection

Andrea Dal Pozzolo, Olivier Caelen, and Gianluca Bontempi

Abstract

State-of-the-art classification algorithms suffer when the data is skewed towards one
class. This led to the development of a number of techniques to cope with unbalanced
data. However, no technique appears to work consistently better in all conditions. This
paper presents a new R package, called unbalanced, which implements some well-known
techniques for unbalanced classification tasks and provides a racing strategy to adaptively
select the best methods for a given dataset, classification algorithms and accuracy measure
adopted.

Keywords: R, unbalanced classification, Racing.

1. Introduction

Learning from unbalanced datasets is a difficult task since most classification algorithms are
not designed to cope with a large difference between the number of cases belonging to different
classes Dal Pozzolo, Caelen, Waterschoot, and Bontempi (2013). The unbalanced nature of
the data is typical of many applications such as medical diagnosis, text classification and oil
spills detection. Credit card fraud detection Dal Pozzolo, Caelen, Le Borgne, Waterschoot,
and Bontempi (2014) is another well-known instance of highly unbalanced problem since
(fortunately) the number of fraudulent transactions is typically much smaller than legitimate
ones. In literature several methods for dealing with unbalanced datasets have been proposed.

Since in real large variate tasks it is hard to know a priori the nature of the unbalanced tasks,
the user is recommended to test all techniques with a consequent high computational cost.
Under different conditions, such as distinct datasets and algorithms, the best methods may
change. In this context we propose a racing strategy Maron and Moore (1993) to automatically
select the most adequate technique for a given dataset. The rationale of the racing strategy
consists in testing in parallel a set of alternative balancing strategies on a subset of the dataset
and to remove progressively the alternatives which are significantly worse.

By adopting a racing strategy we are able to select in an efficient manner either the best bal-
ancing method or a method which is not significantly different from the best one Dal Pozzolo
et al. (2013). Moreover, racing is able to reduce consistently the computation needed before
finding the right methods for the dataset.

2. Methods for unbalanced classification

The unbalanced package implements some of the most well-known sampling and distance-
based methods for unbalanced classification task. Within the family of sampling methods, we

2 Racing for Unbalanced Methods Selection

have functions for random undersampling (ubUnder) and oversampling (ubOver) Drummond
and Holte (2003). The package contains also a function called ubSMOTE that implements
SMOTE Chawla, Bowyer, Hall, and Kegelmeyer (2002). Other distance-based methods avail-
able in unbalanced are OSS Kubat, Matwin et al. (1997) (ubOSS), CNN Hart (1968) (ubCNN),
ENN Wilson (1972) (ubENN), NCL Laurikkala (2001) (ubNCL) and Tomek Link Tomek (1976)
(ubTomek). All these methods can be called by a wrapper function ubBalance that allows
testing all these strategies by simpling changing the argument type.

The package includes the ubIonosphere datasets, which is a modification of the Ionosphere
dataset contained in mlbench package. It has only numerical input variables, i.e. the first two
variables are removed. The Class variable, originally taking values bad and good, has been
transformed into a factor where 1 denotes the minority (bad) and 0 the majority class (good).
This variable is our target and it is in the last column of the dataset. In the following we will
also called the minority class as positive and the majority as negative.

For example, let’s apply oversampling to the Ionosphere dataset to have a balanced dataset.

library(unbalanced)

data(ubIonosphere)

n <- ncol(ubIonosphere)

output <- ubIonosphere[,n]

input <- ubIonosphere[,-n]

set.seed(1234)

#apply oversampling

data <- ubBalance(X=input, Y=output, type="ubOver", k=0)

#oversampled dataset

overData <- data.frame(data$X, Class=data$Y)

#check the frequency of the target variable after oversampling

summary(overData$Class)

0 1

225 225

In this case we replicate the minority class until we have as many positive as negative instances.
Alternativelly, we can balance the dataset using undersampling (i.e. removing observations
from the majority class):

#apply undersampling

data <- ubBalance(X=input, Y=output, type="ubUnder", perc=50, method="percPos")

#undersampled dataset

underData <- data.frame(data$X, Class=data$Y)

#check the frequency of the target variable after oversampling

summary(underData$Class)

0 1

126 126

Andrea Dal Pozzolo, Olivier Caelen, and Gianluca Bontempi 3

Another well-know method for unbalanced distribution is SMOTE, which oversample the
minority class by creating new synthetic observations. Let’s compare the performances of two
randomForest classifiers, one trained on the original unbalanced dataset and a second trained
on a dataset obtained after applying SMOTE.

set.seed(1234)

#keep half for training and half for testing

N <- nrow(ubIonosphere)

N.tr <- floor(0.5*N)

id.tr <- sample(1:N, N.tr)

id.ts <- setdiff(1:N, id.tr)

X.tr <- input[id.tr,]

Y.tr <- output[id.tr]

X.ts <- input[id.ts,]

Y.ts <- output[id.ts]

unbalTrain <- data.frame(X.tr, Class=Y.tr)

summary(unbalTrain$Class)

0 1

111 64

library(randomForest)

#use the original unbalanced training set to build a model

model1 <- randomForest(Class ~ ., unbalTrain)

#predict on the testing set

preds <- predict(model1, X.ts, type="class")

confusionMatrix1 <- table(prediction=preds, actual=Y.ts)

print(confusionMatrix1)

actual

prediction 0 1

0 111 5

1 3 57

#rebalance the training set before building a model

balanced <- ubBalance(X=X.tr, Y=Y.tr, type="ubSMOTE", percOver=200, percUnder=150)

balTrain <- data.frame(balanced$X, Class=balanced$Y)

summary(balTrain$Class)

0 1

192 192

#use the balanced training set

model2 <- randomForest(Class ~ ., balTrain)

4 Racing for Unbalanced Methods Selection

#predict on the testing set

preds <- predict(model2, X.ts, type="class")

confusionMatrix2 <- table(prediction=preds, actual=Y.ts)

print(confusionMatrix2)

actual

prediction 0 1

0 103 1

1 11 61

#we can now correctly classify more minority class instances

Using SMOTE we alter the original class distribution and we are able to increase the number of
minority instances correctly classified. After smoting the dataset we have fewer false negatives,
but a larger number of false positives. In unbalanced classification, it often desired to correctly
classify all minority instances (reducing the number of false negatives), because the cost of
missing a positive instances (a false negative) is much higher than the cost of missing a
negative instance (a false positive).

3. Racing for strategy selection

The variety of approaches available in the unbalanced package allows the user to test multiple
unbalanced methods. In a real situation where we have no prior information about the data
distribution, it is difficult to decide which unbalanced strategy to use. In this case testing all
alternatives is not an option either because of the associated computational cost.

A possible solution comes from the adoption of the Racing approach which was proposed
in Maron and Moore (1993) to perform efficiently model selection in a learning task. The
principle of Racing consists in testing in parallel a set of alternatives and using a statistical
test to determine if an alternative is significantly worse than the others. In that case such
alternative is discarded from the competition, and the computational effort is devoted to
differentiate the remaining ones. The F-race version was proposed in Birattari, Stützle,
Paquete, and Varrentrapp (2002) and combines the Friedman test with Hoeffding Races Maron
and Moore (1993) to eliminate inferior candidates as soon as enough statistical evidence arises
against them. In F-race, the Friedman test is used to check whether there is evidence that at
least one of the candidates is significantly different from others and post-tests are applied to
eliminate those candidates that are significantly worse than the best one.

Here we adopt F-Race to search efficiently for the best strategy for unbalanced data. The
candidates are assessed on different subsets of data and, each time a new assessment is made,
the Friedman test is used to dismiss significantly inferior candidates. We used a 10 fold cross
validation to provide the assessment measure to the race. If a candidate is significantly better
than all the others than the race is terminated without the need of using the whole dataset.
In case there is not evidence of worse/better methods, the race terminates when the entire
dataset is explored and the best candidate is the one with the best average result. F-Race is
available in unbalanced with the ubRacing function and its implementation is a modification
of the race function available in the race package. The function ubRacing compares the

Andrea Dal Pozzolo, Olivier Caelen, and Gianluca Bontempi 5

8 unbalanced methods (ubUnder, ubOver, ubSMOTE, ubOSS, ubCNN, ubENN, ubNCL, ubTomek)
against the unbalanced distribution, so we have 9 candidates starting the race.

In the following we will use a highly unbalanced dataset containing credit card transactions
used in Dal Pozzolo, Caelen, Johnson, and Bontempi (2015) and available here: http://www.
ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata.

set.seed(1234)

load the dataset

load(url("http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata"))

#configuration of the sampling method used in the race

ubConf <- list(percOver=200, percUnder=200,

k=2, perc=50, method="percPos", w=NULL)

Race with 10 trees in the Random Forest to speed up results

results <- ubRacing(Class ~., creditcard, "randomForest", positive=1,

metric="auc", ubConf=ubConf, ntree=10)

##

Racing for unbalanced methods selection in 10 fold CV

Number of candidates...9

Max number of folds in the CV.................................10

Max number of experiments....................................100

Statistical test...................................Friedman test

##

Markers:

x No test is performed.

- The test is performed and

some candidates are discarded.

= The test is performed but

no candidate is discarded.

##

+-+-----------+-----------+-----------+-----------+-----------+

| | Fold| Alive| Best| Mean best| Exp so far|

+-+-----------+-----------+-----------+-----------+-----------+

|x| 1| 9| 4| 0.9541| 9|

|=| 2| 9| 4| 0.954| 18|

|-| 3| 2| 4| 0.9591| 27|

|=| 4| 2| 4| 0.963| 29|

|=| 5| 2| 4| 0.9651| 31|

|-| 6| 1| 4| 0.9646| 33|

+-+-----------+-----------+-----------+-----------+-----------+

Selected candidate: ubSMOTE metric: auc mean value: 0.9646

Race using 4 cores and 500 trees (default number of trees in randomForest)

http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata
http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata

6 Racing for Unbalanced Methods Selection

results <- ubRacing(Class ~., creditcard, "randomForest", positive=1,

metric="auc", ubConf=ubConf, ncore=4)

Let's try with a different algorithm (see mlr package for supported packages)

library(e1071)

results <- ubRacing(Class ~., creditcard, "svm", positive=1, ubConf=ubConf)

library(rpart)

results <- ubRacing(Class ~., creditcard, "rpart", positive=1, ubConf=ubConf)

The best method according to the F-race is SMOTE. Please note that it is possible to change
the type of statistical test used to remove candidates in the race with the argument stat.test.
When we set stat.test = "no", no statistical test is performed and the race terminates when
all the folds of the cross validation are explored.

4. Conclusion

With the unbalanced package we have made available some of the most well-known methods
for unbalanced distribution. All these methods can be called from ubBalance that is a wrapper
to the method-specific functions. Depending on the type of dataset, classification algorithm
and accuracy measure adopted, we may have different strategies that return the best accuracy.

This consideration has lead us to adopt the F-race strategy where different candidates (unbal-
anced methods) are tested simultaneously. This algorithm is implemented in the ubRacing

function which selects the best candidate without having to explore the whole dataset.

References

Birattari M, Stützle T, Paquete L, Varrentrapp K (2002). “A racing algorithm for configuring
metaheuristics.” In Proceedings of the genetic and evolutionary computation conference, pp.
11–18.

Chawla N, Bowyer K, Hall LO, Kegelmeyer WP (2002). “SMOTE: synthetic minority over-
sampling technique.” Journal of Artificial Intelligence Research (JAIR), 16, 321–357.

Dal Pozzolo A, Caelen O, Johnson R, Bontempi G (2015). “Using calibrated probability
with undersampling.” In 2015 IEEE Symposium on Computational Intelligence and Data
Mining. IEEE.

Dal Pozzolo A, Caelen O, Le Borgne YA, Waterschoot S, Bontempi G (2014). “Learned
lessons in credit card fraud detection from a practitioner perspective.” Expert Systems with
Applications, 41(10), 4915–4928.

Dal Pozzolo A, Caelen O, Waterschoot S, Bontempi G (2013). “Racing for unbalanced meth-
ods selection.” In Proceedings of the 14th International Conference on Intelligent Data
Engineering and Automated Learning. IDEAL.

Andrea Dal Pozzolo, Olivier Caelen, and Gianluca Bontempi 7

Drummond C, Holte R (2003). “C4.5, class imbalance, and cost sensitivity: why under-
sampling beats over-sampling.” In Workshop on Learning from Imbalanced Datasets II.
Citeseer.

Hart PE (1968). “The Condensed Nearest Neighbor Rule.” IEEE Transactions on Information
Theory.

Kubat M, Matwin S, et al. (1997). “Addressing the curse of imbalanced training sets: one-
sided selection.” In MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN
CONFERENCE-, pp. 179–186. MORGAN KAUFMANN PUBLISHERS, INC.

Laurikkala J (2001). “Improving identification of difficult small classes by balancing class
distribution.” Artificial Intelligence in Medicine, pp. 63–66.

Maron O, Moore A (1993). “Hoeffding races: Accelerating model selection search for classifi-
cation and function approximation.” Robotics Institute, p. 263.

Tomek I (1976). “Two modifications of CNN.” IEEE Trans. Syst. Man Cybern., 6, 769–772.

Wilson D (1972). “Asymptotic properties of nearest neighbor rules using edited data.” Sys-
tems, Man and Cybernetics, (3), 408–421.

Affiliation:

Andrea Dal Pozzolo, Gianluca Bontempi
Machine Learning Group (MLG),
Computer Science Department,
Faculty of Sciences ULB,
Université Libre de Bruxelles,
Brussels, Belgium
E-mail: adalpozz@ulb.ac.be, gbonte@ulb.ac.be

Olivier Caelen,
Fraud Risk Management Analytics,
Worldline S.A.,
Brussels, Belgium
E-mail: olivier.caelen@worldline.com

mailto:adalpozz@ulb.ac.be
mailto:gbonte@ulb.ac.be
mailto:olivier.caelen@worldline.com

	Introduction
	Methods for unbalanced classification
	Racing for strategy selection
	Conclusion

