
HitWalker Vignette

Daniel Bottomly

November 29, 2012

1 An initial example

We will begin by replicating Figure 1 in Bottomly et al. (submitted) using a
basic workflow. For most users, a workflow of this kind will be used frequently
once the necessary database is setup. This example assumes that the RSQLite

and HitWalkerData packages are installed and uses a very simple database
that is bundled with HitWalkerData. The bundled graph is from STRING
(http://string-db.org/newstring download/protein.links.detailed.v9.0.txt.gz; 1-
30-2012) with the edge weights thresholded at 400 and limited to human pro-
teins. Creation of this database is covered in the Hitwalker Create DB vignette.

> stopifnot(require(HitWalker))

> stopifnot(require(RSQLite))

> stopifnot(require(HitWalkerData))

> data(params)

> db.con <- dbConnect("SQLite", hitwalker.db.path())

> graph.obj <- loadGraph(graph.file.path(), examp.prior.param)

> test.out <- run.prioritization.patient(db.con, "08-00102", graph.obj, examp.prior.param)

> stopifnot(dbDisconnect(db.con))

>

The variantPriorResult object returned from run.prioritization.patient

contains all of the information retrieved from the database for that sample. To
create a graphical representation, we first create a graphDispParams object
which controls many of the aspects of the plotting. Examples of creation of this
object can be found in the Hitwalker Add Metadata vignette. For now we can
use the saved parameters in the HitWalkerData package:

> plot(test.out, examp.graph.param)

Found 3 target nodes and 3 mut nodes

Finding target--mutation distances

Finding target--target distances

Finding mut--mut distances

Making subgraph

Converting to graphNEL

1



>

MAPK14

FLT3

F: 1

R: 1

CBL

EPHA4

PIK3CB

PRKCE

F: 3

R: 3

KHDRBS1

STAT5A

RAC1

SRC

MAP2K6

FRK

FYN

PTENIRS4

ZAK

F: 1

R: 2

DDR1

JAK3

AC084035.1

99

90

71 89

97

91

85

95

96

42

99

97

80

90 4264

99

5596

955447

91

4742

Aspects of graphDispParams objects will be examined in the following sec-
tions. As the main purpose of this package is to prioritize variants, of greater
interest might be the ranked variants themselves along with accompanying meta-
data.

> sum.dta <- summary(test.out)

> disp.cols <- c("symbol", "protein", "chr", "pos", "ref", "alt", "type.rank")

> head(sum.dta[,disp.cols])

symbol protein chr pos ref alt type.rank

10 FLT3 ENSP00000241453 13 28610138 G A 1

24 ZAK ENSP00000364361 2 174128561 A T 2

33 PRKCE ENSP00000306124 2 46372327 C T 3

48 RPS6KA2 ENSP00000386050 6 167271710 G GC 4

23 MYO3B ENSP00000386213 2 171070907 G T 5

39 MYC ENSP00000367207 8 128750527 T C 6

>

2



2 A closer look

The parameter classes, priorDbParams and graphDispParams are the most im-
portant part of HitWalker and work with the specified database to provide the
desired output. Next we examine some of the considerations if using an in-
house database. These considerations are explored below. Those interested in
adopting our MySQL schema are referred to www.biodevlab.org/software.html
for documentation. Queries that will work with our schema are provided in the
HitWalker:::defaultPriorDbParams().

2.1 Graph and annotation

The simplest way to maintain a graph structure associated with the variant
and functional assay data is by storing it in a database table. If it is stored
with a row indicating an edge, with a column indicating the ’from’ node, an-
other indicating the ’to’ edge and the weight then it can easily be retrieved
using get.protein.protein.graph with the exact retrieval procedure being
controled by a function supplied to the matrix.query slot of priorDbParams

that returns the requisite SQL. Accompanying annotation will be retrieved by
SQL derived from a function supplied to the annot.query.func slot. Cur-
rently get.protein.protein.graph subsets the graph and annotation to only
the nodes that are common to both. In addition there is potential for local
upweighting of edges based on scores supplied to nodes however, it should be
considered highly experimental at this time.

Currently get.protein.protein.graph assumes that the graph database
table contains columns named ’protein1’, ’protein2’ and ’weight’ and that the
annotation data.frame contains a column named ’protein’. For the other func-
tions more flexibility is allowed. In this implementation both ’core’ and ’sum-
mary’ (e.g. protein and gene symbol respectively) column names need to be
specified. Each function typically only operates on the data using either the
’summary’ or ’core’ IDs and this is controlled by the named character vector
supplied to the func.summary.map slot of the priorDbParams class. In order to
enable this functionality any of the retrieved data.frame objects should have
columns corresponding to either of the ’core’ or ’summary’ columns.

2.2 Sample Names

The next component of HitWalker is resolution of the sample name. The cur-
rent implementation is very simple and assumes that there will be little ambi-
guity. There are four relevant slots in the priorDbParams object: id.table,
possible.id.cols, reconciled.id.col and sample.id.col. Essentially the
specified columns are searched in the table for a partial match to the specified
sample identifier. If a unique match is found, the values in reconciled.id.col

and sample.id.col will be passed on to downstream functions. This procedure
is carried out using the reconcile.sample.name function. Further information
can be found in the documentation and source code.

3



2.3 Variants, functional hits and metadata

After determining the sample name, the variants, functional hits and relevant
metadata are retrieved. This is carried out by specified functions that return
SQL queries in text form placed in the variant.query, hit.query and pa-

tient.overlay.func slots accordingly. These slots will be accessed using meth-
ods defined for the priorDbParams class and the queries will be dispatched using
a common mechanism, namely the retrieve.param.query function.

2.3.1 Variants and text-based filters

In addition to variant retrieval, a basic filtering mechanism, filter.variant.annots,
is provided for text-based filters created from the variantFilter class. This
is provided to facilitate hard filtering that has to be performed prior to any
analysis. By specifying the criteria in the program as opposed to the database,
a researcher can easily determine the effect of the chosen criteria. Also of im-
portance are the pat.var.id and variant.type.col slots of priorDbParams.
These specify the columns that uniquely identifies a variant and the type of
variant respectively.

2.3.2 Functional hit scores

Multiple types of functional hit data can be retrieved. However, for prioritization
the scores have to be summarized into a single value for each unit. The manner
in which this occurs needs to be specified using the score.summary.func slot
with hit.comb.score.name indicating the resulting column.

2.4 Metadata

Metadata relavant to all the nodes in the graph should be retrieved along with
the rest of the annotation (See the Graph and Annotation subsection). If sam-
ples have specific metadata applicable to a subset of their nodes then that is
retrieved though the function specified in the patient.overlay.func slot of
the priorDbParams object.

2.5 Plotting considerations

Plotting is carried out using by first instantiating a graphDispParams class using
the makeGraphDispParams function. Of universal relevance are the file.name,
width and height arguments which specify the PDF to which the plot is drawn
and its dimensions. On screen display is provided by supplying character()

as the file.name. The size of the plotted graph (in terms of nodes and edges)
as well as the time it takes to create is controlled by the max.plot.vars and
max.plot.hits arguments. For example, increasing the number of variants
from the default 3 to 5 in the example above results in the figure below when
supplied to the plot method:

4



> maxPlotVars(examp.graph.param) <- 5

> plot(test.out, examp.graph.param)

Found 3 target nodes and 5 mut nodes

Finding target--mutation distances

Finding target--target distances

Finding mut--mut distances

Making subgraph

Converting to graphNEL

>

MAPK1

MAPK14

FLT3

F: 1

R: 1

KRAS

CBL

EPHA4

PIK3CB

PRKCE

F: 3

R: 3

KHDRBS1CDC42

STAT5A

RAC1

CALM1 SRC

MAP2K6

FRK

FYN JUN

PTEN IRS4

ZAK

F: 1

R: 2

RPS6KA2

F: 75

R: 4

MYO3B

F: 1

R: 5

DDR1

JAK3

AC084035.1

9991

99

90

7189

97

98

96

8489

91

79 85

95

96 64

42

99

97

80

579042 6499

99

88 55

51

96

95 54 47

91 67

47 42

Other arguments to makeGraphDispParams can be used to control how the
retrieved metadata are mapped to the nodes of the graph. Currently there are
three different manners of displaying metadata. Nodes can take different shapes,
have different colors, as well as have different borders styles.

2.5.1 Node shapes

In this implementation of HitWalker, all of the nodes shapes available from
RGraphviz could potentially be used in addition to up and down triangles as
well as other shapes. For example, we use triangles to indicate sample-specific
expression differences and ’half’ triangles to indicate alternative splicing events

5



(the direction of the point indicating direction of differences). The standard
ellipses indicate no expression differences and/or no information and a rectan-
gle indicates annotation issues or other ambiguity and is drawn with a warn-
ing. This is controlled using the shape.mapping.func function supplied to
graphDispParams. Examples of the triangles are shown below:

> plot.new()

> HitWalker:::draw.triangle(.2,.75,.25,.2,.2,"white","black",2,1,"up_std")

> HitWalker:::draw.triangle(.2,.25,.25,.2,.2,"white","black",2,1,"down_std")

> HitWalker:::draw.triangle(.75,.75,.25,.25,.25,"white","black",2,1,"up_half")

> HitWalker:::draw.triangle(.75,.25,.25,.25,.25,"white","black",2,1,"down_half")

>

2.5.2 Node colors

In addition to shapes, colors also provide an effective way to communicate node
relationships. In this implementation they refer to variant or functional hit
status. Colors are mapped to nodes using the character vectors specified to the
hit.colors and query.color arguments of the makeGraphDispParams function
in conjunction with the getFillColors method of variantPriorResult. When
multiple colors overlap (e.g. a node is both a functional assay hit and has a
variant), the node is divided into equal pieces and colored accordingly. Some
examples follow:

6



> plot.new()

> use.color <- c("white", "black")

> HitWalker:::draw.triangle(.2,.75,.25,.2,.2,use.color,"black",2,1,"up_std")

> use.color <- append(use.color, "blue")

> HitWalker:::draw.triangle(.2,.25,.25,.2,.2,use.color,"black",2,1,"down_std")

> use.color <- append(use.color, "yellow")

> HitWalker:::draw.triangle(.75,.75,.25,.25,.25,use.color,"black",2,1,"up_half")

> use.color <- append(use.color, "red")

> HitWalker:::draw.triangle(.75,.25,.25,.25,.25,use.color,"black",2,1,"down_half")

>

2.5.3 Node borders

Changing node borders is the last mechanism for displaying relevant metadata
on the plots. It is controlled by a function supplied to the style.mapping.func
argument of the makeGraphDispParams function. Currently appropriate return
values are defined as in the lty subsection of par.

7


