
HitWalker: Case Study 1 – Glioblastoma

Daniel Bottomly

November 29, 2012

1 Introduction

In this vignette we demonstrate the use of HitWalker on data from the can-
cer genome atlas (TCGA) (http://cancergenome.nih.gov/) as accessed by the
CGDS-R package (http://www.cbioportal.org/public-portal/). Although, to
our knowledge, there are no publicly available datasets in TCGA with func-
tional assay results it may be instructive to carry out a representative analysis.
Here we endeavor to prioritize genes with mutations based on their proximity
to genes with dysregulated expression in Glioblastoma. This data has been pre-
viously described (TCGA 2008) and is available through the CGDS-R package.

2 Retrieval and preparation of data

As we are also required to define a list of the genes before retrieval of the
data, it seems appropriate to use a curated list of genes known to be involved
in various types of cancer from the cancer gene census (Futreal et al. 2004).
First we download the current list in Excel form (Table 1 full 2012-03-15.xls)
from http://www.sanger.ac.uk/genetics/CGP/Census/. This list was converted
to CSV through ’File->Save As’ drop down menu From Excel. Note that the
below code was only executed once and the results saved to HitWalkerData. It
is accessed through data(glio) as in the second section.

> stopifnot(require(cgdsr))

> stopifnot(require(biomaRt))

> canc.genes <- read.csv("Table_1_full_2012-03-15.csv", header=TRUE, stringsAsFactors=FALSE)

> #connect to the server

> cgds.con <- CGDS("http://www.cbioportal.org/public-portal/")

> #first retrieve the mutation data. Can retrieve based on Entrez IDs per

> #http://www.cbioportal.org/public-portal/web_api.jsp (which cgdsr queries)

>

> gbm.muts <- getMutationData(cgds.con, caseList="gbm_tcga_pub_all",

+ geneticProfile="gbm_tcga_pub_mutations", genes=canc.genes$GeneID)

> #next we will retrieve data from the gene expression analysis (as an example)

> #these appear to be Zscores

1

>

> gbm.expr <- getProfileData(cgds.con, caseList="gbm_tcga_pub_all",

+ geneticProfile="gbm_tcga_pub_mrna", genes=canc.genes$GeneID)

> #the other piece is to be able to reconcile the Entrez Gene IDs with protein IDs,

> #which in this case are Ensembl protein IDs. One way of doing this is through

> #the biomaRt package which can provide the appropriate conversions

>

> ensembl = useMart("ensembl",dataset="hsapiens_gene_ensembl")

> entrez.to.ens <- getBM(mart=ensembl, attributes=c("hgnc_symbol", "entrezgene",

+ "ensembl_gene_id", "ensembl_transcript_id", "ensembl_peptide_id"),

+ filters="entrezgene", values=canc.genes$GeneID)

>

The first database table we will create lists the patient samples. This is most
important for situations where multiple IDs are assigned to a given sample. An
example would be separate IDs assigned by both the preparation laboratory and
the sequencing or microarray facility. HitWalker has a simple function to allow
partial matching of names over all the specified columns of a database. When
setting up the priorDbParams object set the id.table slot to the name of the
sample table, possible.id.cols slot to the columns to be searched, the recon-
ciled.id.col to the name that should be attributed to the sample throughout
the analyses and the sample.id.col slot to the integer value uniquely indi-
cating the name (i.e. primary key in database jargon). For the TCGA data,
something like this would suffice:

> stopifnot(require(reshape2))

> stopifnot(require(RSQLite))

> stopifnot(require(HitWalker))

> stopifnot(require(HitWalkerData))

> data(glio)

> common.samps <- intersect(gbm.muts$case_id, gsub("\\.", "-", rownames(gbm.expr)))

> samp.db <- data.frame(sample_id=1:length(common.samps), recon_name=common.samps,

+ alt_name=make.names(common.samps))

> #Note that alt_name is the conversion to R safe names

>

> head(samp.db)

sample_id recon_name alt_name

1 1 TCGA-02-0083 TCGA.02.0083

2 2 TCGA-02-0010 TCGA.02.0010

3 3 TCGA-06-0176 TCGA.06.0176

4 4 TCGA-06-0133 TCGA.06.0133

5 5 TCGA-02-0028 TCGA.02.0028

6 6 TCGA-02-0089 TCGA.02.0089

> db.con <- dbConnect("SQLite", "TCGA_glio_mut_exp.db")

> dbWriteTable(db.con, "sample", samp.db, row.names=FALSE)

2

[1] TRUE

> #If we retrieve a base priorDbParams object we can modify it appropriately as

> #we go using the numerous replacement methods.

>

> base.parm <- HitWalker:::basePriorDbParams()

> idTable(base.parm) <- "sample"

> possibleIdCols(base.parm) <- c("recon_name", "alt_name")

> reconciledIdCol(base.parm) <- "recon_name"

> sampleIdCol(base.parm) <- "sample_id"

>

The next step is to put the variant data in the database. First we need to
reconcile the GeneIDs with protein IDs. Our example is a suboptimal case as
we can retrieve the GeneID and the mutation type, however additional work
would be necessary to determine which transcript was mutated. For now, we
can associate each mutation with all assigned proteins. This level of annota-
tion is acceptable as STRING stores only a single translated protein per locus
(according to their FAQ) so limiting the variant effect to only the transcript in
question may be too restrictive. At this point we will also retrieve the bundled
annotatedIGraph object and filter the proteins to include only the set present
in the graph. This filtering step is not essential as it will be performed before
the computations regardless.

> #Specify how the annotatedIGraph object is to be constructed

> matrixQuery(base.parm) <- function(sample.id.list = NULL, param.obj)

+ {

+ query <- "SELECT protein1, protein2, combined_score/1000.0 AS

+ weight FROM string_v9_db WHERE combined_score > 400;"

+ return(query)

+ }

> annotQuery(base.parm) <- function(sample.id.list = NULL, param.obj)

+ {

+ query <- "SELECT * FROM annotation;"

+ }

> graph.con <- dbConnect("SQLite", annot.db.path())

> graph.obj <- get.protein.protein.graph(graph.con, base.parm, get.annotation=TRUE,

+ on.symbol.protein.dup="remove.dup")

Retrieving graph structure

Retreiving gene annotation

Removing 0 nodes due to absense of annotation

Creating graph with 17419 nodes

> dbDisconnect(graph.con)

[1] TRUE

3

> kept.ens.prots <- subset(entrez.to.ens, ensembl_peptide_id %in%

+ annotation(graph.obj)$protein)

> gbm.muts.merge <- merge(gbm.muts, kept.ens.prots, by.x="entrez_gene_id",

+ by.y="entrezgene", all=FALSE, incomparables=NA, sort=FALSE)

> dbWriteTable(db.con, "variant", gbm.muts.merge, row.names=FALSE)

[1] TRUE

> queryParams(base.parm) <- list()

> variantQuery(base.parm) <- function(sample.id.list, param.obj)

+ {

+ return(paste("SELECT gene_symbol AS symbol, ensembl_peptide_id AS protein,

+ case_id, mutation_type, validation_status, amino_acid_change,

+ functional_impact_score FROM variant WHERE case_id = '",
+ sample.id.list$recon,"'", sep=""))

+ }

> variantFilterObj(base.parm) <- makeVariantFilter()

>

Note that we wrote the variant data to the database in a somewhat denormal-
ized (expanded) form which may or may not be how it is stored in a production
database. By supplying named elements to the queryParams method and a
SQL query that uses them (by the retrieval version of the method applied to
param.obj) and the sample information in the sample.id.list, it is relatively
easy to specify custom queries to retrieve data per sample. Here we are subset-
ting the variant information by the value specified in the ’recon’ element of the
sample.id.list which happens to correspond to the ’recon name’ column of
the sample table (See ’?reconcile.sample.name’). We are also specifying no vari-
ant filter data. The variantFilter object is only useful if hard filters have been
applied to the data resulting in labels (e.g. ’PASS’ or ’HARD TO VALIDATE’)
and the variants need to be filtered and (re)labeled accordingly.

The last step in database preparation involves adding a table corresponding
to the functional assay hits or gene expression values in this example. Again,
we will convert the gene identifiers to protein IDs as well as reformat the data
so it is more amendable to storage in a database. Additional metadata could
also be added as is demonstrated in the Hitwalker Add Metadata vignette.

> gbm.expr.df <- melt(as.matrix(gbm.expr))

> colnames(gbm.expr.df) <- c("sample", "symbol", "Zscore")

> #Remove NAs and convert them to 0's
> gbm.expr.df$Zscore[is.na(gbm.expr.df$Zscore)] <- 0

> gbm.expr.df$symbol <- as.character(gbm.expr.df$symbol)

> merged.gbm.expr <- merge(gbm.expr.df, kept.ens.prots, by.x="symbol", by.y="hgnc_symbol",

+ all=FALSE, incomparables=NA, sort=FALSE)

> dbWriteTable(db.con, "gene_hit", merged.gbm.expr, row.names=FALSE)

4

[1] TRUE

> #Here we are defining genes with absolute Zscores greater than 2 to be hits

> hitQuery(base.parm) <- function(sample.id.list, param.obj)

+ {

+ return(paste("SELECT symbol, sample, Zscore,ensembl_peptide_id AS protein FROM

+ gene_hit WHERE Sample = '", make.names(sample.id.list$recon) ,

+ "' AND ABS(Zscore) > 2", sep=""))

+ }

> #We also modify this function to ensure that the scores are computed from the right column

> #Will take the absolute values of the Zscores as directionality is not really taken into

> #account using the RWR framework

> scoreSummaryFunc(base.parm) <- function (dta, summary.col)

+ {

+ dta[, summary.col] <- abs(dta$Zscore)

+ return(dta)

+ }

>

Now that the database is setup we can produce summaries and plots for each
sample. Here we will choose the top two samples based on having a high Zscore
and mutations and will produce summaries and plots for each. In addition, this
database is provided in HitWalkerData and the path to it can be found using
tcga.glio.path().

> int.pats <- dbGetQuery(db.con, "SELECT sample, Zscore FROM gene_hit JOIN sample ON

+ (sample=alt_name) GROUP BY sample HAVING MAX(ABS(Zscore)) > 6")

> int.pats

sample Zscore

1 TCGA.06.0206 6.661944

2 TCGA.06.0213 6.518932

> samp.res.1 <- run.prioritization.patient(db.con, int.pats$sample[1], graph.obj, base.parm)

> samp.res.2 <- run.prioritization.patient(db.con, int.pats$sample[2], graph.obj, base.parm)

> dbDisconnect(db.con)

[1] TRUE

> summary(samp.res.1)[,c("protein", "symbol", "mutation_type", "amino_acid_change",

+ "type.rank")]

protein symbol mutation_type amino_acid_change type.rank

3 ENSP00000269305 TP53 Missense_Mutation R273H 1

2 ENSP00000267163 RB1 Splice_Site R830_splice 2

1 ENSP00000361021 PTEN Frame_Shift_Del T319fs 3

> summary(samp.res.2)[,c("protein", "symbol", "mutation_type", "amino_acid_change",

+ "type.rank")]

5

protein symbol mutation_type amino_acid_change type.rank

2 ENSP00000267163 RB1 Missense_Mutation V654L 1

1 ENSP00000361021 PTEN Nonsense_Mutation R335* 2

> #Make a basic plot but need to change the colors attributed to the gene hits

> #Also, as we just want a node label indicating ranks, we have to adjust the labelFuncList

> #method

>

> graph.params <- makeGraphDispParams(file.name = character())

> hitColors(graph.params) <- "red"

> labelFuncList(graph.params) <- list(HitWalker:::no.label, HitWalker:::no.label,

+ HitWalker:::rank.label)

>

> plot(samp.res.1, graph.params)

Found 3 target nodes and 3 mut nodes

Finding target--mutation distances

Finding target--target distances

Finding mut--mut distances

Making subgraph

Converting to graphNEL

>

COL1A1

SLC9A3R1

RB1

R: 2

TP53

R: 1

MED1

PTH1R

SP1

DMP1

THRAP3

FN1

RUNX2CDKN2A

BGLAP

PTEN

R: 3

OMD

97

9299 98

44

99 99

99

8597

92

87 9899 99

99

95

49

9594

60

83

47

93

6

> plot(samp.res.2, graph.params)

Found 3 target nodes and 2 mut nodes

Finding target--mutation distances

Finding target--target distances

Finding mut--mut distances

Making subgraph

Converting to graphNEL

>

SPI1 TBP

PRMT1

FUS

KAT2B

RB1

R: 1

TAF15

CDKN2A

PTEN

R: 2

PCNA

93

96 98

99

97 82

95

59 88

97

87

53

93

93

85

3 References

Futreal,P.A., Coin,L., et al. (2004) A census of human cancer genes. Nat Rev
Cancer, 4, 177-183.

TCGA (2008) Comprehensive genomic characterization defines human glioblas-
toma genes and core pathways. Nature, 455, 1061-1068.

7

