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1 Preliminaries

Packages that we will use are:

require(xtable,quietly=TRUE)

require(lme4,quietly=TRUE)

suppressMessages(require(mgcv))

require(RePsychLing,quietly=TRUE)

suppressMessages(require(texreg))

suppressMessages(require(itsadug))

require(lattice, quietly=TRUE)

2 The KKL dataset

We take the kkl dataset from RePsychLing, and create a separate variable for the interaction of
spt and orn.

dat <- KKL

dat$FirstTrial <- dat$first==1

mm <- model.matrix(~ sze*(spt+obj+grv)*orn, data=KKL)

dat$spt_orn = mm[,11]

2.1 The LMM

As starting point, we take the lmm obtained with lmer, but now refit it with mgcv. Random effects
are modeled as smooths with re basis functions. Random slopes for subject are specified as s(subj,
bs="re"), and by-subject random contrasts for obj as s(subj, orn, bs="re"). We use the bam()
function rather than the gam function because it evaluates more quickly, albeit at the potential cost
of a slight loss of precision. Even so, be aware that bam evaluates very much more slowly than lmer.

dat.gam0 <- bam(lrt ~ sze * (spt + obj + grv) * orn +

s(subj, bs="re") +

s(subj, spt, bs="re") +

s(subj, grv, bs="re") +

s(subj, obj, bs="re") +

s(subj, orn, bs="re") +

s(subj, spt_orn, bs="re"),

data=dat, method="ML")

summary(dat.gam0)

Family: gaussian

Link function: identity

Formula:
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lrt ~ sze * (spt + obj + grv) * orn + s(subj, bs = "re") + s(subj,

spt, bs = "re") + s(subj, grv, bs = "re") + s(subj, obj,

bs = "re") + s(subj, orn, bs = "re") + s(subj, spt_orn, bs = "re")

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.69103 0.01727 329.50 < 2e-16

sze 0.18414 0.03454 5.33 9.8e-08

spt 0.07440 0.00770 9.66 < 2e-16

obj 0.04086 0.00450 9.09 < 2e-16

grv -0.00153 0.00533 -0.29 0.7748

orn 0.04087 0.01044 3.92 9.0e-05

sze:spt 0.04880 0.01540 3.17 0.0015

sze:obj -0.01069 0.00899 -1.19 0.2345

sze:grv -0.03616 0.01066 -3.39 0.0007

sze:orn 0.01650 0.02087 0.79 0.4291

spt:orn 0.02020 0.00669 3.02 0.0025

obj:orn 0.00922 0.00734 1.26 0.2093

grv:orn 0.01105 0.00737 1.50 0.1338

sze:spt:orn -0.01267 0.01337 -0.95 0.3433

sze:obj:orn -0.00195 0.01469 -0.13 0.8945

sze:grv:orn -0.04353 0.01474 -2.95 0.0031

Approximate significance of smooth terms:

edf Ref.df F p-value

s(subj) 83.6 84 8022.1 < 2e-16

s(subj,spt) 76.2 84 6497.1 < 2e-16

s(subj,grv) 47.8 84 152.6 2.3e-11

s(subj,obj) 31.7 84 176.8 0.00028

s(subj,orn) 80.8 84 99.9 < 2e-16

s(subj,spt_orn) 44.0 84 23.1 9.2e-09

R-sq.(adj) = 0.477 Deviance explained = 48.1%

-ML = -12294 Scale est. = 0.036202 n = 53765

Inspection of the residuals (Figure 1)

acf(resid(dat.gam0))

reveals autocorrelational structure. However, when applying the general acf function to the residuals,
we do not distinguish between the individual time series constituted by the data for the separate
subjects, and may therefore obtain imprecise and sometimes misleading information about the
autocorrelations. We therefore inspect the autocorrelations for the individual subjects using a trellis
graph (Figure 2).

dfr = acf_resid(dat.gam0, # acf_resid from package itsadug

split_pred=list(subj=dat$subj),

plot=FALSE,

return_all=TRUE)$dataframe

civec = dfr[dfr$lag==0,]$ci # vector of confidence intervals for xyplot

xyplot(acf ~ lag | subj, type = "h", data = dfr, col.line = "black",

panel = function(...) {
panel.abline(h = civec[panel.number()], col.line = "grey")

panel.abline(h = -civec[panel.number()], col.line = "grey")
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Figure 1: Acf function for the initial model without differentiating for individual time series.

panel.abline(h = 0, col.line = "black")

panel.xyplot(...)

},
strip = strip.custom(bg = "grey90"),

par.strip.text = list(cex = 0.8),

xlab="lag", ylab="autocorrelation")

Note the presence of substantial variation between subjects with respect to the magnitude of the
autocorrelations, also with respect to the number of lags at which these autocorrelations persist.
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Figure 2: Autocorrelations in the initial model for each subject-specific time series.
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2.2 By-subject factor smooths for trial

To reduce the autocorrelation in the errors, we add a by-subject factor smooth for trial with the
directive

s(trial, subj, bs="fs", m=1).

Here, a factor smooth basis is requested (bs="fs") with shrinkage (m=1). Factor smooths are
appropriate when smooths are required for a factor with a large number of levels, and each smooth
should have the same smoothing parameter. The fs smoothers have penalties on each null space
component, which with m=1 are set to order 1, so that we have the nonlinear ‘wiggly’ counterpart of
what in a linear mixed model would be handled with by-subject random intercepts and by-subject
random slopes. The model with by-subject factor smooths for trial is:

dat.gam1 <- bam(lrt ~ sze * (spt + obj + grv) * orn +

s(subj, spt, bs="re") +

s(subj, grv, bs="re") +

s(subj, obj, bs="re") +

s(subj, orn, bs="re") +

s(subj, spt_orn, bs="re") +

s(trial, subj, bs="fs", m=1),

data=dat, method="ML")

As the factor smooths ‘absorb’ the random intercepts, no separate request for random intercepts is
required. The model summary

summary(dat.gam1)

Family: gaussian

Link function: identity

Formula:

lrt ~ sze * (spt + obj + grv) * orn + s(subj, spt, bs = "re") +

s(subj, grv, bs = "re") + s(subj, obj, bs = "re") + s(subj,

orn, bs = "re") + s(subj, spt_orn, bs = "re") + s(trial,

subj, bs = "fs", m = 1)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.728103 0.017819 321.47 < 2e-16

sze 0.179647 0.035637 5.04 4.6e-07

spt 0.074483 0.007763 9.59 < 2e-16

obj 0.041530 0.004425 9.39 < 2e-16

grv -0.000546 0.004921 -0.11 0.91161

orn 0.019875 0.009761 2.04 0.04173

sze:spt 0.046126 0.015526 2.97 0.00297

sze:obj -0.008455 0.008849 -0.96 0.33933

sze:grv -0.036411 0.009842 -3.70 0.00022

sze:orn 0.049243 0.019521 2.52 0.01165

spt:orn 0.022882 0.006500 3.52 0.00043

obj:orn 0.008648 0.007027 1.23 0.21843

grv:orn 0.012527 0.007055 1.78 0.07579

sze:spt:orn -0.013802 0.013001 -1.06 0.28843

sze:obj:orn -0.004611 0.014053 -0.33 0.74281
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sze:grv:orn -0.047642 0.014110 -3.38 0.00073

Approximate significance of smooth terms:

edf Ref.df F p-value

s(subj,spt) 76.9 84 28.02 < 2e-16

s(subj,grv) 44.5 84 1.82 4.2e-09

s(subj,obj) 35.0 84 1.77 3.0e-05

s(subj,orn) 53.4 84 1.88 < 2e-16

s(subj,spt_orn) 46.1 84 1.27 3.1e-10

s(trial,subj) 643.8 772 1266.20 < 2e-16

R-sq.(adj) = 0.526 Deviance explained = 53.4%

-ML = -14212 Scale est. = 0.032854 n = 53765

indicates that the factor smooths are well supported, but it might be that a simpler model with
by-subject random intercepts only is just as good. Model comparison shows this not to be the case.

compareML(dat.gam0, dat.gam1) # from package itsadug

dat.gam0: lrt ~ sze * (spt + obj + grv) * orn + s(subj, bs = "re") + s(subj,

spt, bs = "re") + s(subj, grv, bs = "re") + s(subj, obj,

bs = "re") + s(subj, orn, bs = "re") + s(subj, spt_orn, bs = "re")

dat.gam1: lrt ~ sze * (spt + obj + grv) * orn + s(subj, spt, bs = "re") +

s(subj, grv, bs = "re") + s(subj, obj, bs = "re") + s(subj,

orn, bs = "re") + s(subj, spt_orn, bs = "re") + s(trial,

subj, bs = "fs", m = 1)

Chi-square test of ML scores

-----

Model Score Edf Chisq Df p.value Sig.

1 dat.gam0 -12294 22

2 dat.gam1 -14212 23 1917.248 1.000 < 2e-16 ***

AIC difference: 4686.84, model dat.gam1 has lower AIC.

We again inspect the residuals for autocorrelation, which is substantially reduced but not completely
eliminated (Figure 3).

dfr = acf_resid(dat.gam1,

split_pred=list(subj=dat$subj),

plot=FALSE,

return_all=TRUE)$dataframe

civec = dfr[dfr$lags==0,]$ci

xyplot(acf ~ lag | subj, type = "h", data = dfr, col.line = "black",

panel = function(...) {
panel.abline(h = civec[panel.number()], col.line = "grey")

panel.abline(h = -civec[panel.number()], col.line = "grey")

panel.abline(h = 0, col.line = "black")

panel.xyplot(...)

},
strip = strip.custom(bg = "grey90"),

par.strip.text = list(cex = 0.8),

xlab="lag", ylab="autocorrelation")
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Figure 3: Autocorrelation functions for each subject-specific time series in the model with factor
smooths.
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2.3 An AR1 process in the errors

Since there is still some small autocorrelational structure in the residuals, we further whiten the
errors by filtering out a mild autocorrelative process with proportionality ρ = 0.15. To do so, we
need to tell bam where new time series begin. This is accomplished with the variable FirstTrial,
which is true whenever a new time series starts (which is the case whenever trial==1), and false
elsewhere. Crucially, the rows in the data frame should be ordered by subject, and within subject,
by trial. The directives for bam are:

AR.start=dat$FirstTrial, rho=0.15

We fit the model and summarize it.

dat.gam2 <- bam(lrt ~ sze * (spt + obj + grv) * orn +

s(subj, spt, bs="re") +

s(subj, grv, bs="re") +

s(subj, obj, bs="re") +

s(subj, orn, bs="re") +

s(subj, spt_orn, bs="re") +

s(trial, subj, bs="fs", m=1),

AR.start=dat$FirstTrial, rho=0.15,

data=dat, method="ML")

summary(dat.gam2)

Family: gaussian

Link function: identity

Formula:

lrt ~ sze * (spt + obj + grv) * orn + s(subj, spt, bs = "re") +

s(subj, grv, bs = "re") + s(subj, obj, bs = "re") + s(subj,

orn, bs = "re") + s(subj, spt_orn, bs = "re") + s(trial,

subj, bs = "fs", m = 1)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.725191 0.017730 322.90 < 2e-16

sze 0.180231 0.035461 5.08 3.7e-07

spt 0.073017 0.007893 9.25 < 2e-16

obj 0.040762 0.004103 9.93 < 2e-16

grv -0.000501 0.004892 -0.10 0.91849

orn 0.019850 0.008984 2.21 0.02714

sze:spt 0.047950 0.015787 3.04 0.00239

sze:obj -0.007886 0.008206 -0.96 0.33657

sze:grv -0.035036 0.009783 -3.58 0.00034

sze:orn 0.048386 0.017967 2.69 0.00708

spt:orn 0.021655 0.006405 3.38 0.00072

obj:orn 0.008665 0.006881 1.26 0.20794

grv:orn 0.008930 0.006907 1.29 0.19604

sze:spt:orn -0.009092 0.012811 -0.71 0.47790

sze:obj:orn -0.007498 0.013762 -0.54 0.58584

sze:grv:orn -0.048455 0.013813 -3.51 0.00045

Approximate significance of smooth terms:

edf Ref.df F p-value

s(subj,spt) 77.7 84 31.76 < 2e-16
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s(subj,grv) 46.3 84 2.04 3.4e-10

s(subj,obj) 28.3 84 1.24 0.0011

s(subj,orn) 41.9 84 1.05 < 2e-16

s(subj,spt_orn) 46.9 84 1.31 9.5e-11

s(trial,subj) 604.0 772 666.70 < 2e-16

R-sq.(adj) = 0.525 Deviance explained = 53.2%

-ML = -14756 Scale est. = 0.033118 n = 53765

By-subject acf plots

dfr = acf_resid(dat.gam2, # acf_resid from package itsadug

split_pred=list(subj=dat$subj),

plot=FALSE,

return_all=TRUE)$dataframe

civec = dfr[dfr$lag==0,]$ci # vector of confidence intervals for xyplot

xyplot(acf ~ lag | subj, type = "h", data = dfr, col.line = "black",

panel = function(...) {
panel.abline(h = civec[panel.number()], col.line = "grey")

panel.abline(h = -civec[panel.number()], col.line = "grey")

panel.abline(h = 0, col.line = "black")

panel.xyplot(...)

},
strip = strip.custom(bg = "grey90"),

par.strip.text = list(cex = 0.8),

xlab="lag", ylab="autocorrelation")

show that an occasional subject still has some remaining autocorrelation. However, further increasing
ρ would induce spurious autocorrelations for subjects with hardly any autocorrelations in their
residuals. Ideally, the ρ parameter would be tuneable to each individual subject. With current
software, this is not possible. Hence, the chosen value of ρ = 0.15 is a compromise that allows
reducing strong autocorrelations without creating many artificial autocorrelations where none are
present.
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Figure 4: Autocorrelation functions for each subject-specific time series in the model with factor
smooths and AR1 correction for the errors.
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2.4 A nonlinear main effect of SOA

Next, we bring into the model the nonlinear effect of soa with a thin plate regression spline (the
default spline in mgcv).

dat.gam3 <- bam(lrt ~ sze * (spt + obj + grv) * orn +

s(subj, spt, bs="re") +

s(subj, grv, bs="re") +

s(subj, obj, bs="re") +

s(subj, orn, bs="re") +

s(subj, spt_orn, bs="re") +

s(SOA) +

s(trial, subj, bs="fs", m=1) ,

AR.start=dat$FirstTrial, rho=0.15,

data=dat, method="ML")

summary(dat.gam3)

Family: gaussian

Link function: identity

Formula:

lrt ~ sze * (spt + obj + grv) * orn + s(subj, spt, bs = "re") +

s(subj, grv, bs = "re") + s(subj, obj, bs = "re") + s(subj,

orn, bs = "re") + s(subj, spt_orn, bs = "re") + s(SOA) +

s(trial, subj, bs = "fs", m = 1)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.725232 0.017774 322.12 < 2e-16

sze 0.180390 0.035547 5.07 3.9e-07

spt 0.072801 0.007844 9.28 < 2e-16

obj 0.041138 0.004091 10.05 < 2e-16

grv -0.000518 0.004895 -0.11 0.91568

orn 0.019187 0.009004 2.13 0.03309

sze:spt 0.048046 0.015688 3.06 0.00220

sze:obj -0.008696 0.008183 -1.06 0.28793

sze:grv -0.036482 0.009790 -3.73 0.00019

sze:orn 0.047304 0.018007 2.63 0.00862

spt:orn 0.021357 0.006387 3.34 0.00083

obj:orn 0.008053 0.006836 1.18 0.23878

grv:orn 0.007746 0.006862 1.13 0.25893

sze:spt:orn -0.009870 0.012774 -0.77 0.43973

sze:obj:orn -0.007979 0.013672 -0.58 0.55948

sze:grv:orn -0.048638 0.013724 -3.54 0.00039

Approximate significance of smooth terms:

edf Ref.df F p-value

s(subj,spt) 77.69 84.00 31.93 < 2e-16

s(subj,grv) 46.82 84.00 2.11 1.6e-10

s(subj,obj) 28.74 84.00 1.28 0.00095

s(subj,orn) 42.28 84.00 1.08 < 2e-16

s(subj,spt_orn) 47.29 84.00 1.34 4.8e-11

s(SOA) 5.48 6.62 104.42 < 2e-16

s(trial,subj) 606.39 772.00 676.96 < 2e-16
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R-sq.(adj) = 0.53 Deviance explained = 53.8%

-ML = -15091 Scale est. = 0.032687 n = 53765

The final model in Figure 1 in the paper is based on this model. The next code snippet recreates
this figure.

# randomly select 5 subjects

set.seed(314)

Events <- sample(levels(dat$subj))[1:5]

# collect acf data for the three models

dfr1 = acf_resid(dat.gam3, split_pred=list(subj=dat$subj),

cond=list(subj=Events),

plot=FALSE, return_all=TRUE)$dataframe

dfr2= acf_resid(dat.gam1, split_pred=list(subj=dat$subj),

cond=list(subj=Events),

plot=FALSE, return_all=TRUE)$dataframe

dfr3 = acf_resid(dat.gam0, split_pred=list(subj=dat$subj),

cond=list(subj=Events),

plot=FALSE, return_all=TRUE)$dataframe

# combine and add column specifying models

Dfr <- rbind(dfr1, dfr2, dfr3)

Dfr$model <- rep(c("final model","model with fs","initial model"),

c(nrow(dfr1), nrow(dfr2), nrow(dfr3)))

# beautify event names

levels(Dfr$event) = c("time series 1",

"time series 2",

"time series 3",

"time series 4",

"time series 5")

# order models for xyplot

Dfr$model = ordered(Dfr$model,

c("final model",

"model with fs",

"initial model"))

# conf. intervals for xyplot

civec = Dfr[Dfr$lag==0,]$ci

xyplot(acf ~ lag | event + model, type = "h", data = Dfr, col.line = "black",

panel = function(...) {
panel.abline(h = civec[panel.number()], col.line = "grey")

panel.abline(h = -civec[panel.number()], col.line = "grey")

panel.abline(h = 0, col.line = "black")

panel.xyplot(...)

},
strip = strip.custom(bg = "grey90"),

par.strip.text = list(cex = 0.8),

xlab="lag", ylab="autocorrelation")
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Figure 5: Figure 1 in the paper: ACF for 5 subjects for three models.
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Figure 6: Smooth terms produced with plot.gam (mgcv).

The nonlinear effects in this final model (dat.gam3) can be visualized in various ways. Using the
plot functionality of mgcv, we can select smooth terms by their row number in the smooths table
of the summary. For plots of s(subj,orn), s(SOA) and s(trial,subj) we proceed as follows (see
Figure 6):

plot(dat.gam3, select=4, main=" ")

plot(dat.gam3, select=6, scheme=1, ylim=c(-0.05, 0.06))

plot(dat.gam3, select=7)

For random contrasts, a quantile-quantile plot for the blups is shown, for the covariate, a smooth
with 95% confidence intervals, and for the factor smooths, the partial effects for each subject.

The plot for the factor smooths is overcrowded. We inspect the individual subjects’ partial effects
for trial with a trellis graph.
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Figure 7: Factor smooths for subjects.

xyplot(fit~trial|subj, data=get_modelterm(dat.gam3, select=7, as.data.frame=TRUE), type="l")

The left panel of Figure 2 in the paper is obtained by selecting a subset of these subjects that
illustrate the range of nonlinear patterns.

subjects = c("1", "124", "19", "46", "118", "146", "143", "108", "123")

pp = get_modelterm(dat.gam3, select=7,

cond=list(subj=subjects),

as.data.frame=TRUE)

xyplot(fit~trial|subj, data=pp, type="l")
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Figure 8: Factor smooths for selected subjects (Figure 2 in the paper).

It is noteworthy that subject 123 has the largest autocorrelations in Figure 2 and displays the largest
changes in response speed in the course of the experiment. This illustrates how slow changes in
response behavior as an experiment proceeds may induce marked non-independence in the response.

2.5 Model comparisons

To assess the importance of the factor smooth, and the wiggliness it captures, we compare the gamm
with an lmm that incorporates by-subject random slopes for trial.

dat.lmer = lmer(lrt ~ sze * (spt + obj + grv) * orn +

(spt + grv | subj) +

(0 + obj | subj) +

(0 + orn | subj) +

(0 + spt_orn | subj) +

(0 + trial|subj),

data=dat, REML=FALSE)

A blunt way of comparing goodness of fit is to compare the proportion of variance explained by all
predictors jointly, both random and fixed.

Rsquareds = c(

cor(fitted(kkl4), dat$lrt)^2,

cor(fitted(dat.gam0), dat$lrt)^2,

cor(fitted(dat.gam1), dat$lrt)^2,

cor(fitted(dat.lmer), dat$lrt)^2,

cor(fitted(dat.gam2), dat$lrt)^2,
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Figure 9: Overall R-squared for different models for the KKL dataset.

cor(fitted(dat.gam3), dat$lrt)^2)

names(Rsquareds) = c("baseline LMM", "baseline GAMM", "GAMM+fs", "LMM+rs", "GAMM+fs+AR1",

"GAMM+fs+AR1+SOA")

dotplot(sort(Rsquareds), xlab="R-squared")

Figure 9 indicates that the factor smooths are well supported. Note that the inclusion of an ar1
process for the errors (with ρ = 0.15) makes the model a bit more conservative: the data can be
predicted less well because of the autocorrelative process in the errors.

Table 1 in the paper, which compares the initial model with the final model, is reproduced as follows.

load("models/kkl4.rda")

# table comparing coefficients and t values for the two models

tab = cbind(summary(kkl4)$coefficients[,1],

dat.gam0.smry$p.table[,1],

dat.gam3.smry$p.table[,1],

summary(kkl4)$coefficients[,3],

dat.gam0.smry$p.table[,3],

dat.gam3.smry$p.table[,3])

colnames(tab) = c("beta initial lmer",

"beta initial gamm",
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"beta final (gamm)",

"t 0 (lmer)",

"t 0 (gamm)",

"t 3 (gamm)")

tab = round(tab, 3)

tab # formatted as Table 1

beta initial lmer beta initial gamm beta final (gamm) t 0 (lmer) t 0 (gamm) t 3 (gamm)
(Intercept) 5.691 5.691 5.725 327.683 329.496 322.120
sze 0.184 0.184 0.180 5.302 5.331 5.075
spt 0.074 0.074 0.073 9.824 9.663 9.281
obj 0.041 0.041 0.041 9.360 9.091 10.055
grv -0.002 -0.002 -0.001 -0.323 -0.286 -0.106
orn 0.041 0.041 0.019 3.916 3.917 2.131
sze:spt 0.049 0.049 0.048 3.221 3.169 3.063
sze:obj -0.011 -0.011 -0.009 -1.218 -1.189 -1.063
sze:grv -0.036 -0.036 -0.036 -3.445 -3.390 -3.727
sze:orn 0.017 0.017 0.047 0.792 0.791 2.627
spt:orn 0.020 0.020 0.021 3.025 3.022 3.344
obj:orn 0.009 0.009 0.008 1.263 1.256 1.178
grv:orn 0.011 0.011 0.008 1.519 1.499 1.129
sze:spt:orn -0.013 -0.013 -0.010 -0.952 -0.948 -0.773
sze:obj:orn -0.002 -0.002 -0.008 -0.140 -0.133 -0.584
sze:grv:orn -0.044 -0.044 -0.049 -2.989 -2.954 -3.544

Table 1: Estimates of the fixed-effects coefficients and associated t-values for model 0 (without
correction for autocorrelation) fitted with lmer and with bam and model 3 (with full correction for
autocorrelation), fitted with bam.

This table indicates changes in the fixed-effect estimates for terms involving orn, the orientation of
the picture presented to the participants.

A more precise way of clarifying what changes between the initial and final model is to compare the
importance of the different terms in the model. We assess term importance by leaving it out of the
model specification, and assessing the decrease in goodness of fit by means of the change for the
worse in the ML score. We first consider the gamm.

fmla = formula(lrt ~ sze * (spt + obj + grv) * orn +

s(subj, spt, bs="re") +

s(subj, grv, bs="re") +

s(subj, obj, bs="re") +

s(subj, orn, bs="re") +

s(subj, spt_orn, bs="re") +

s(SOA) +

s(trial, subj, bs="fs", m=1)

)

# leave out spt from random effects

fmla1 = formula(lrt ~ sze * (spt + obj + grv) * orn +

s(subj, grv, bs="re") +

s(subj, obj, bs="re") +
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s(subj, orn, bs="re") +

s(subj, spt_orn, bs="re") +

s(SOA) +

s(trial, subj, bs="fs", m=1)

)

# leave out grv from random effects

fmla2 = formula(lrt ~ sze * (spt + obj + grv) * orn +

s(subj, spt, bs="re") +

s(subj, obj, bs="re") +

s(subj, orn, bs="re") +

s(subj, spt_orn, bs="re") +

s(SOA) +

s(trial, subj, bs="fs", m=1)

)

# leave out obj from random effects

fmla3 = formula(lrt ~ sze * (spt + obj + grv) * orn +

s(subj, spt, bs="re") +

s(subj, grv, bs="re") +

s(subj, orn, bs="re") +

s(subj, spt_orn, bs="re") +

s(SOA) +

s(trial, subj, bs="fs", m=1)

)

# leave out orn from random effects

fmla4 = formula(lrt ~ sze * (spt + obj + grv) * orn +

s(subj, spt, bs="re") +

s(subj, grv, bs="re") +

s(subj, obj, bs="re") +

s(subj, spt_orn, bs="re") +

s(SOA) +

s(trial, subj, bs="fs", m=1)

)

# leave out spt_orn from random effects

fmla5 = formula(lrt ~ sze * (spt + obj + grv) * orn +

s(subj, spt, bs="re") +

s(subj, grv, bs="re") +

s(subj, obj, bs="re") +

s(subj, orn, bs="re") +

s(SOA) +

s(trial, subj, bs="fs", m=1)

)

# leave out factor smooth from random effects, we have to put random intercepts back in

fmla6 = formula(lrt ~ sze * (spt + obj + grv) * orn +

s(subj, spt, bs="re") +

s(subj, grv, bs="re") +

s(subj, obj, bs="re") +

s(subj, orn, bs="re") +

s(subj, spt_orn, bs="re") +

s(subj, bs="re") +

s(SOA),

)

# leave out SOA

fmla7 = formula(lrt ~ sze * (spt + obj + grv) * orn +
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s(subj, spt, bs="re") +

s(subj, grv, bs="re") +

s(subj, obj, bs="re") +

s(subj, orn, bs="re") +

s(subj, spt_orn, bs="re") +

s(trial, subj, bs="fs", m=1)

)

# leave out sze

fmla8 = formula(lrt ~ (spt + obj + grv) * orn +

s(subj, spt, bs="re") +

s(subj, grv, bs="re") +

s(subj, obj, bs="re") +

s(subj, orn, bs="re") +

s(subj, spt_orn, bs="re") +

s(SOA) +

s(trial, subj, bs="fs", m=1)

)

# leave out orn and all associated random effect terms

fmla9 = formula(lrt ~ sze * (spt + obj + grv) +

s(subj, spt, bs="re") +

s(subj, grv, bs="re") +

s(subj, obj, bs="re") +

s(SOA) +

s(trial, subj, bs="fs", m=1)

)

# leave out tar (spt, obj, grv) and all associated random effect terms

fmla10 = formula(lrt ~ sze * orn +

s(subj, orn, bs="re") +

s(SOA) +

s(trial, subj, bs="fs", m=1)

)

formulae = list(fmla1, fmla2, fmla3, fmla4, fmla5,

fmla6, fmla7, fmla8, fmla9, fmla10)

# fixed effects in caps, variance components in lower case

# trial represents the factor smooth

names(formulae) = c("spt", "grv", "obj", "orn", "spt_orn",

"trial", "SOA", "SZE", "ORN", "TAR")

mls = as.numeric(dat.gam3$gcv.ubre)

# the next loop collects fREML scores

# this takes a couple of hours

for (i in 1:length(formulae)) {
m = bam(formulae[[i]],

AR.start=dat$FirstTrial, rho=0.15,

data=dat, method="ML")

mls = c(mls, as.numeric(m$gcv.ubre))

}
names(mls) = c("baseline", names(formulae))

Next, we consider the baseline lmm, for which we always retain the by-subject random intercepts.
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fmla = formula(lrt ~ sze * (spt + obj + grv) * orn +

s(subj, spt, bs="re") +

s(subj, grv, bs="re") +

s(subj, obj, bs="re") +

s(subj, orn, bs="re") +

s(subj, spt_orn, bs="re") +

s(subj, bs="re")

)

# leave out spt from random effects

fmla1 = formula(lrt ~ sze * (spt + obj + grv) * orn +

s(subj, grv, bs="re") +

s(subj, obj, bs="re") +

s(subj, orn, bs="re") +

s(subj, spt_orn, bs="re") +

s(subj, bs="re")

)

# leave out grv from random effects

fmla2 = formula(lrt ~ sze * (spt + obj + grv) * orn +

s(subj, spt, bs="re") +

s(subj, obj, bs="re") +

s(subj, orn, bs="re") +

s(subj, spt_orn, bs="re") +

s(subj, bs="re")

)

# leave out obj from random effects

fmla3 = formula(lrt ~ sze * (spt + obj + grv) * orn +

s(subj, spt, bs="re") +

s(subj, grv, bs="re") +

s(subj, orn, bs="re") +

s(subj, spt_orn, bs="re") +

s(subj, bs="re")

)

# leave out orn from random effects

fmla4 = formula(lrt ~ sze * (spt + obj + grv) * orn +

s(subj, spt, bs="re") +

s(subj, grv, bs="re") +

s(subj, obj, bs="re") +

s(subj, spt_orn, bs="re") +

s(subj, bs="re")

)

# leave out spt_orn from random effects

fmla5 = formula(lrt ~ sze * (spt + obj + grv) * orn +

s(subj, spt, bs="re") +

s(subj, grv, bs="re") +

s(subj, obj, bs="re") +

s(subj, orn, bs="re") +

s(subj, bs="re")

)

# leave out sze

fmla6 = formula(lrt ~ (spt + obj + grv) * orn +

s(subj, spt, bs="re") +

s(subj, grv, bs="re") +
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s(subj, obj, bs="re") +

s(subj, orn, bs="re") +

s(subj, spt_orn, bs="re") +

s(subj, bs="re")

)

# leave out orn and all associated random effect terms

fmla7 = formula(lrt ~ sze * (spt + obj + grv) +

s(subj, spt, bs="re") +

s(subj, grv, bs="re") +

s(subj, obj, bs="re") +

s(subj, bs="re")

)

# leave out tar (spt, obj, grv) and all associated random effect terms

fmla8 = formula(lrt ~ sze * orn +

s(subj, orn, bs="re") +

s(subj, bs="re")

)

formulaeLMM = list(fmla1, fmla2, fmla3, fmla4, fmla5,

fmla6, fmla7, fmla8)

# fixed effects in caps, variance components in lower case

names(formulaeLMM) = c("spt", "grv", "obj", "orn", "spt_orn", "SZE", "ORN", "TAR")

mlsLMM = as.numeric(dat.gam0$gcv.ubre)

# collect fREML statistics

# the next loop takes about an hour

for (i in 1:length(formulaeLMM)) {
cat(i, " ")

m = bam(formulaeLMM[[i]], data=dat, method="ML")

mlsLMM = c(mlsLMM, as.numeric(m$gcv.ubre))

}
names(mlsLMM) = c("baseline", names(formulaeLMM))

cat("\n")

# calculate changes in fREML scores compared to the full model

m = rep(mls[1], length(mls)-1)

m = m - mls[2:length(mls)]

names(m)=c("spt", "grv", "obj", "orn", "spt_orn", "trial", "SOA", "SIZE", "ORN", "TAR")

m = -m

m

spt grv obj orn spt_orn trial SOA SIZE

302.646 16.689 3.999 13.296 19.472 1317.720 335.112 32.765

ORN TAR

74.899 2768.349

mLMM = rep(mlsLMM[1], length(mlsLMM)-1)

mLMM = mLMM - mlsLMM[2:length(mlsLMM)]

names(mLMM)=c("spt", "grv", "obj", "orn", "spt_orn", "SIZE", "ORN", "TAR")

mLMM = -mLMM

mLMM

spt grv obj orn spt_orn SIZE ORN TAR

239.285 18.562 5.285 758.659 15.135 28.243 1676.725 2445.818
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m2 = c(mLMM, 0, 0)

names(m2)[9:10] = c("TRIAL", "SOA")

m2 = m2[order(names(m2))]

m = m[order(names(m))]

# bring information together in data frame

dfr = data.frame(decrease = c(m, m2),

term = rep(names(m),2),

model = c(rep("final", length(m)), rep("initial", length(m))))

dfr$term = gsub("_", ":", dfr$term)

dfr$val = rep(m,2)

dfrA = dfr[dfr$model=="final",]

dfrB = dfr[dfr$model!="final",]

dfrA = dfrA[order(dfrA$val),]

dfrB = dfrB[order(dfrB$val),]

dfr2 = rbind(dfrA, dfrB)

dfr2$term = factor(dfr2$term)

dfr2$F = factor(rep(strsplit("abcdefghij", "")[[1]],2))

dfr2$F = factor(rep(1:10, 2), labels=as.character(dfr2$term[1:10]))

dotplot(F~decrease, groups=model, data=dfr2,

pch=c(19, 2), col="black", cex=c(1, 1.3),

xlab="decrease in goodness of fit when a term is dropped",

key=list(text=list(c("final model", "initial model")),

points=list(pch=c(19,2), cex=c(1, 1.3)))

)

Figure 10 indicates that once the autocorrelations are dealt with, a model is obtained that assigns
slightly greater importance to TAR and substantially less importance to ORN (and orn). Apparently,
changes in orientation of the picture presented are more prone to give rise to attentional shifts that
linger on to the next trial.
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Figure 10: Variable importance for the LMM and GAMM.
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3 Parsimony in regression

Baayen and Milin (2010) reported a self-paced reading experiment with overspecified random effects
structure. The response variable in this study is log-transformed reaction time. Of the many
predictors considered by these authors, we select three to illustrate the overspecification problem:
word frequency, participant age in years, and participant’s reaction times for a multiple-choice
question probing their reading habits. The latter variable was included to probe between-subject
variance and to capture variance that would otherwise have to be accounted for through by-participant
random intercepts. All three predictors were log-transformed and scaled.

load("data/poems.rda")

# abbreviate names

poems$Fre = scale(poems$LogWordFormFrequency)

poems$Mul = scale(poems$LogMultipleChoiceRT)

poems$Age = scale(log(poems$Age))

poems$Lrt = poems$LogReadingTime

# order by subject and trial

poems = poems[order(poems$Subject, poems$Trial),]

# scale Trial

poems$TrialSc = as.numeric(scale(poems$Trial))

# add logical for starting point of time series

pos = tapply(poems$Trial, poems$Subject, min)

poems$MinTrial = pos[as.character(poems$Subject)]

poems$Start = poems$MinTrial==poems$Trial

A total of 275996 data points are available, from 326 subjects, for 2315 appearing across 87 modern
Dutch poems. Words are partially nested under poems. Any given subject read only a subset of
poems.

3.1 Linear mixed models for the poems data set

We first fit a simple model with the three predictors and the three random-effect factors,

poems.lmer0 = lmer(Lrt ~ Fre + Mul + Age +

(1|Poem)+ (1|Subject)+ (1|Word),

data=poems, REML=FALSE)

and inspect the summary.

print(summary(poems.lmer0), corr=FALSE)

Linear mixed model fit by maximum likelihood ['lmerMod']

Formula: Lrt ~ Fre + Mul + Age + (1 | Poem) + (1 | Subject) + (1 | Word)

Data: poems

AIC BIC logLik deviance df.resid

174760 174845 -87372 174744 275988

Scaled residuals:

Min 1Q Median 3Q Max

-5.977 -0.616 -0.107 0.493 5.193

Random effects:
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Groups Name Variance Std.Dev.

Word (Intercept) 0.01435 0.1198

Subject (Intercept) 0.04771 0.2184

Poem (Intercept) 0.00275 0.0524

Residual 0.10750 0.3279

Number of obs: 275996, groups: Word, 2315; Subject, 326; Poem, 87

Fixed effects:

Estimate Std. Error t value

(Intercept) 6.0403 0.0142 426

Fre -0.0580 0.0035 -17

Mul 0.0945 0.0122 8

Age 0.0445 0.0121 4

Next, we fit a series of models that add by-subject slopes for Fre and by-word slopes for Mul, with
and without correlation parameters.

poems.lmer1 = lmer(Lrt ~ Fre + Mul + Age +

(1|Poem) + (1+Fre|Subject) + (1|Word),

data=poems, REML=FALSE)

poems.lmer2 = lmer(Lrt ~ Fre + Mul + Age +

(1|Poem) + (1+Fre|Subject) + (1+Mul|Word),

data=poems, REML=FALSE)

poems.lmer3 = lmer(Lrt ~ Fre + Mul + Age +

(1|Poem) + (1|Subject) + (0+Fre|Subject) + (1+Mul|Word),

data=poems, REML=FALSE)

poems.lmer4 = lmer(Lrt ~ Fre + Mul + Age +

(1|Poem) + (1+Fre|Subject) + (1|Word) + (0+Mul|Word),

data=poems, REML=FALSE)

Likelihood ratio tests

# testing for random slopes and correlations, first subject, then also word

round(as.data.frame(anova(poems.lmer0, poems.lmer1, poems.lmer2)),4)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

poems.lmer0 8 174761 174845 -87372 174745 NA NA NA

poems.lmer1 10 172376 172481 -86178 172356 2388.35 2 0

poems.lmer2 12 172302 172429 -86139 172278 77.83 2 0

# testing for by-subject correlation parameter for Fre

round(as.data.frame(anova(poems.lmer3, poems.lmer2)),4)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

poems.lmer3 11 172461 172577 -86219 172439 NA NA NA

poems.lmer2 12 172302 172429 -86139 172278 160.4 1 0
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# testing for by-word correlation parameter for Mul

round(as.data.frame(anova(poems.lmer4, poems.lmer2)),4)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

poems.lmer4 11 172372 172488 -86175 172350 NA NA NA

poems.lmer2 12 172302 172429 -86139 172278 71.5 1 0

support the maximal model (poems.lmer2), which we summarize:

print(summary(poems.lmer2), corr=FALSE)

Linear mixed model fit by maximum likelihood ['lmerMod']

Formula: Lrt ~ Fre + Mul + Age + (1 | Poem) + (1 + Fre | Subject) + (1 +

Mul | Word)

Data: poems

AIC BIC logLik deviance df.resid

172302 172429 -86139 172278 275984

Scaled residuals:

Min 1Q Median 3Q Max

-6.061 -0.610 -0.108 0.488 5.130

Random effects:

Groups Name Variance Std.Dev. Corr

Word (Intercept) 0.014624 0.1209

Mul 0.000114 0.0107 0.91

Subject (Intercept) 0.049583 0.2227

Fre 0.001253 0.0354 -0.68

Poem (Intercept) 0.002776 0.0527

Residual 0.106265 0.3260

Number of obs: 275996, groups: Word, 2315; Subject, 326; Poem, 87

Fixed effects:

Estimate Std. Error t value

(Intercept) 6.04262 0.01438 420

Fre -0.05719 0.00401 -14

Mul 0.05511 0.00977 6

Age 0.05786 0.00944 6

Both correlation parameters are interpretable. Words that take more time to respond to may also
be words that take especially long to respond to for participants who are slow deciders in a multiple
choice situation (r = 0.91). Subjects that respond very quickly show little of a frequency effect,
suggesting a trade-off between signal-driven responding and responding on the basis of long-term
lexical priors (r = −0.68).

However, the large value of the correlation parameter for Word is an informal indicator of overpa-
rameterization, pointing to collinearity in the by-word random effects structure. Given a word’s
intercept, one has a very good estimate of that word’s slope, and vice versa, see Figure 11. In other
words, there is not much evidence in the data that would allow separation of the two sources of
by-word variation.

27



−0.2 0.0 0.2 0.4

−
0.

02
0.

00
0.

01
0.

02
0.

03

Intercept

M
ul

Figure 11: By-word BLUPS in the maximal model for the poems dataset.

plot(ranef(poems.lmer2)$Word, xlab="Intercept", pch=".")

This strong collinearity becomes apparent as well when we subject the random effects structure
to a singular value decomposition, and inspect the proportions of squared singular values of the
random-effects variance-covariance estimates (Figure 12). It is clear that the random intercepts are
important. Whether the tiny contributions of the random slopes are worth including in the model
requires further reflection.
Inspection of the variance explained compared to a baseline model with random intercepts for the
three factors only

poems.lmer00 = lmer(Lrt ~ 1 +

(1|Poem) + (1|Subject) + (1|Word),

data=poems, REML=FALSE)

indicates that, as expected given the preceding results, a model that has only by-subject slopes
captures most of the explainable variance, with little additional variance to be captured with the
help of by-word slopes for Mul.

# full model compared to intercept-only model

cor(fitted(poems.lmer2), poems$Lrt)^2 -

cor(fitted(poems.lmer00), poems$Lrt)^2

[1] 0.007656

# model with by-subject slopes but no by-word slopes compared to intercept-only model

cor(fitted(poems.lmer1), poems$Lrt)^2 -

cor(fitted(poems.lmer00), poems$Lrt)^2
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Figure 12: PCA of random-effects variance-covariance estimates.

[1] 0.007266

As is often the case in studies of lexical processing, almost all of the variance is accounted for by
random intercepts for random-effect factors such as subject and item.
Caution with respect to random slopes for Word is advisable given that words are partially crossed
with subject and poem. Some words are specific to a given poem, others are shared by many poems.
Furthermore, not every participant read every poem. In addition, the distribution of the words is
not balanced, but Zipfian, as participants were reading real text. As a consequence, the data are
relatively sparse, and not optimal for estimating interactions of subject properties with word. Since
removal of the by-word random slopes results in only a minor reduction in goodness of fit, a model
without by-word random slopes is a well-motivated alternative to the maximal model.

Inspection of the residuals of the simplified linear mixed model reveals substantial autocorrelation.

acf(resid(poems.lmer1), main=" ")

A model with scaled trial as covariate and corresponding by-subject random slopes,

poems.trial.lmer = lmer(Lrt ~ Fre + Mul + Age + TrialSc +

(1|Poem) + (1+Fre|Subject) + (0+TrialSc|Subject) + (1|Word),

data=poems, REML=FALSE)

summary(poems.trial.lmer)

Linear mixed model fit by maximum likelihood ['lmerMod']

Formula:

Lrt ~ Fre + Mul + Age + TrialSc + (1 | Poem) + (1 + Fre | Subject) +

(0 + TrialSc | Subject) + (1 | Word)

Data: poems

AIC BIC logLik deviance df.resid
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Figure 13: Autocorrelation function for simplified LMM for the poems data.

140010 140136 -69993 139986 275984

Scaled residuals:

Min 1Q Median 3Q Max

-5.993 -0.605 -0.112 0.469 6.023

Random effects:

Groups Name Variance Std.Dev. Corr

Word (Intercept) 0.01480 0.1216

Subject TrialSc 0.00967 0.0983

Subject.1 (Intercept) 0.05021 0.2241

Fre 0.00128 0.0357 -0.65

Poem (Intercept) 0.00206 0.0454

Residual 0.09395 0.3065

Number of obs: 275996, groups: Word, 2315; Subject, 326; Poem, 87

Fixed effects:

Estimate Std. Error t value

(Intercept) 6.03211 0.01417 426

Fre -0.05979 0.00404 -15

Mul 0.05826 0.00982 6

Age 0.05984 0.00974 6

TrialSc -0.07756 0.00550 -14

Correlation of Fixed Effects:

(Intr) Fre Mul Age

Fre -0.036

Mul -0.002 0.000

Age -0.001 0.000 0.004

TrialSc 0.001 0.000 0.000 -0.001
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Figure 14: ACF for simplified LMM and the corresponding model with in addition random slopes
for Trial

which improves considerably in terms of R-squared,

cor(fitted(poems.lmer1), poems$Lrt)^2

[1] 0.3932

cor(fitted(poems.trial.lmer), poems$Lrt)^2

[1] 0.4645

affords only a slight reduction in the autocorrelations of the residual errors (see Figure 14).

par(mfrow=c(1,2))

acf(resid(poems.lmer1), main="LMM")

acf(resid(poems.trial.lmer), main="LMM with Trial")

3.2 Generalized additive modeling of the poems dataset

Often, effects of trial are non-linear. We therefore relax the linearity constraint on trial and consider
a generalized additive mixed model with by-subject factor smooths for trial. In addition, we model
a nonlinear interaction of Frequency and Age with the help of a tensor product smooth (te(Fre,
Age)). We return to this interaction below.

poems.trial.gamA = bam(Lrt~ te(Fre, Age) + Mul +

s(TrialSc, Subject, bs="fs", m=1)+s(Subject, Fre, bs="re"),

data=poems)

The autocorrelation is now reduced more substantially, as can be seen in the left panel of Figure 15.
Inclusion of an ar1 autocorrelative process in the residuals with ρ = 0.30 further reduces the
autocorrelations (right panel). (Baayen & Milin, 2010, used the response latency at the preceding
trial to whiten the errors, but it is preferable to address the autocorrelations directly in the residuals.)
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Figure 15: Autocorrelation functions for GAMMs with factor smooths and AR1 process for the
errors.

poems.trial.gamB = bam(Lrt~ te(Fre, Age) + Mul +

s(TrialSc, Subject, bs="fs", m=1)+s(Subject, Fre, bs="re"),

rho=0.3, AR.start = poems$Start,

data=poems)

The autocorrelation functions shown thus far for the poems data are imprecise, because they ignore
the individual time series of the different subjects. This can give rise to artifacts. We therefore zoom
in on these individual time series for the final model. These time series consist of the button presses
of a given subject as she was reading through the set of poems assigned to her (Figures 16–18).
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Figure 16: Autocorrelation functions for individual readers in the poems data.
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Figure 17: Autocorrelation functions for individual readers in the poems data.
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Figure 18: Autocorrelation functions for individual readers in the poems data.
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For a majority of readers, the errors are appropriately whitened. Some readers, however, still show
autocorrelations across many lags. As just a single autocorrelation parameter can be specified, that
will be applied across all subjects, we again have to settle for a compromise such that artefactual in-
duced (often negative) autocorrelations for many other subjects are avoided. Several strategies could
be persued. If significance is crucial, subjects with strong autocorrelations could be removed, and the
analysis repeated without them. The timeseries could be refined. Instead of taking all data from a
given subject as a timeseries, one could define shorter series, one for each combination of subject and
poem. However, models with large numbers of time series may become unestimable. The subjects
with strong remaining autocorrelations are also of genuine interest by themselves. Are these subjects
the ones who enjoy reading poetry? Or are these the subjects who read through the poems with
little interest and enjoyment? Answers to questions such as these are beyond the scope of this vignette.

By taking nonlinearities into account, we have obtained a model that not only has substantially
reduced autocorrelations in the errors, but that also provides a slightly tighter fit to the data.

# LMM without trial

cor(fitted(poems.lmer1), poems$Lrt)^2

[1] 0.3932

# LMM with trial and by-subject random slopes for trial

cor(fitted(poems.trial.lmer), poems$Lrt)^2

[1] 0.4645

# GAMM with by-subject factor smooths for trial and rho=0.30

cor(fitted(poems.trial.gamB), poems$Lrt)^2

[1] 0.4997

The final model (poems.trial.gamB) is described by the paramatric and smooth subtables from
the summary.

poems.trial.gamB.smry = summary(poems.trial.gamB) # this takes a long time

poems.trial.gamB.smry$p.table

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.12576 0.01397 438.514 0.000e+00

Mul 0.08116 0.01402 5.788 7.118e-09

poems.trial.gamB.smry$s.table

edf Ref.df F p-value

te(Fre,Age) 5.996 7.088 78.36 6.824e-115

s(TrialSc,Subject) 2275.558 2931.000 41.30 0.000e+00

s(Subject,Fre) 302.987 324.000 14.83 0.000e+00

3.3 Nonlinear interactions of covariates

As mentioned above, the final model incorporates a nonlinear interaction of Age by Frequency,
modeled with a tensor product smooth. This interaction is supported by comparison with a model
with main effects only,
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poems.trial.gamC = bam(Lrt ~ Fre + Age + Mul +

s(TrialSc, Subject, bs="fs", m=1) + s(Subject, Fre, bs="re"),

rho=0.3, AR.start = poems$Start,

data=poems)

compareML(poems.trial.gamC, poems.trial.gamB)

Model Score Edf Chisq Df p.value

1 poems.trial.gamC 50172.36 7

2 poems.trial.gamB 50163.23 10 9.137 3.000 3.863e-04

The partial effect of the interaction is shown in Figure 19, left panel.

plot(poems.trial.gamB,select=1, rug=FALSE, main=" ", lwd=1.6) # Fig 19, left panel

x = unique(poems[,c("Fre", "Age")])

points(x, pch=".", col="gray")
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Figure 19: Tensor product smooth for the interaction of Age and Frequency in the poems data. Left:
correct model with by-subject random slopes for frequency. Right: incorrect model without this
variance component. Dotted lines represent 1 SE confidence regions, red dashed lines are 1 SE down
from their contour line, and green dotted lines 1 SE up. Grey dots represent data points.

The age effect is slightly smaller for low-frequency words, and the frequency effect is slightly stronger
for the younger participants. The interaction is mild, but of potential theoretical significance, as
in our previous work on frequency and age (Ramscar et al., 2014, 2013) only aggregate data were
considered in which subject-specific linear slopes for frequency where not partialed out. The right
panel illustrates the consequences of not doing so: a much more irregular and less well interpretable
surface is generated for the interaction. Returning to the left panel, if frequency is understood as a
lexical prior, then older readers of poetry depend less on these priors, suggesting they get more out
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of the poetry.

In summary, Baayen & Milin (2010) proposed a model with several by-word and by-subject random
slopes. Inclusion of these random slopes was motivated in part by the wish to provide stringent
tests for the significance of main effects (cf. Barr et al., 2013), and in part by interest in individual
differences. Upon closer inspection, the by-word random slopes turned out to contribute very little
to the model fit, while at the same time suffering from data sparseness and collinearity. Here, a
more parsimoneous model without the by-word random slopes seems justified. By contrast, we
maintained the by-subject random slopes for frequency. This variance component contributed more
substantially to the model fit, and furthermore turned out to be essential for a proper assessment of
the interaction of age by frequency. Thus, we kept the model maximal within the boundaries set by
what the data can support on the one hand, and by what makes sense theoretically on the other.

4 Concluding comments

The statistician George Box is famous for stating that all models are wrong, but some are more
useful than others. The present model for the poems data is wrong in several ways. We have already
seen that for some subjects, persistent autocorrelations are present in the residuals. Furthermore,
there are many other variables that could have been brought into the analysis. Important for the
present discussion is that it is quite possible that there is subject-specific variation that has not
been accounted for, especially in relation to trial. For instance, the interaction of frequency and age
might be modulated by how far a participant has progressed through the experiment. It might also
vary by poem. Interactions of subject by poem by trial by frequency by age, however realistic, are
beyond what can currently be modelled, and are probably also far beyond what we can integrate
into our theories of language processing. Nevertheless, the present model may be useful as a window
on a complex dataset, the modulation of frequency effects by age, subject-specific differences in the
effect of frequency, and subject-specific variation in local coherence in reading.
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