R/nlareg.R

Defines functions predict.nlareg nlareg

Documented in nlareg predict.nlareg

# nlareg.R
# ::rtemis::
# 2018 Efstathios D. Gennatas

#' \pkg{rtemis} internal: NonLinear Activation regression (NLAreg)
#'
#' @inheritParams s.GLM
#' @param activation String or Function: Activation function to use: provide its name or the function itself.
#' Default = link{softplus}
#' @param b_o Float, vector (length y): Output bias. Defaults to \code{mean(y)}
#' @param W_o Float: Output weight. Defaults to 1
#' @param b_h Float: Hidden layer bias. Defaults to 0
#' @param W_h Float, vector (length \code{NCOL(x)}): Hidden layer weights. Defaults to 0
#' @param optim.method Character: Optimization method to use: "Nelder-Mead", "BFGS", "CG", "L-BFGS-B",
#' "SANN", "Brent". See \code{stats::optim} for more details. Default = \code{"BFGS"}
#' @export
#' @author Efstathios D. Gennatas
#' @return \code{nlareg} object
#' @keywords internal

nlareg <- function(x, y,
                   b_o = mean(y),
                   W_o = 1,
                   b_h = 0,
                   W_h = 0,
                   activation = softplus,
                   optim.method = "BFGS",
                   control = list(),
                   lower = -Inf,
                   upper = Inf, ...) {

  # Arguments ====

  if (is.character(activation)) {
    fn.name <- activation
    activation <- match.fun(activation)
  } else if (is.function(activation)) {
    fn.name <- deparse(substitute(activation))
  } else {
    stop("Unrecognized activation function supplied")
  }

  x <- as.data.frame(x)
  # feature.names <- colnames(x)
  # weight.names <- paste0("w", seq(feature.names))
  # weight.names <- paste0("w", seq(feature.names))
  # wxf <- paste0(weight.names, "*", feature.names, collapse = " + ")
  # params <- c("b_o", "W_o", "b_h", weight.names)

  if (length(W_h) < NCOL(x)) W_h <- rep(rev(W_h)[1], NCOL(x))

  dat <- data.matrix(data.frame(x, y = y))

  # 1 Sigmoid nla regression:
  # .formula <- as.formula(paste0("y ~ b_o + W_o * sigmoid(b_h + ", wxf,")"))

  # data is x, y
  # par is b_o, W_o, b_h, W_h; W_h has length = N of features in x
  minSS <- function(data, par) {
    nc <- ncol(data)
    x <- data[, -nc, drop = FALSE]
    y <- data[, nc]
    b_o = par[1]
    W_o = par[2]
    b_h = par[3]
    W_h = par[-seq(3)]
    sum((y - (b_o + W_o * activation(b_h + x %*% W_h)))^2)
  }

  # optim ====
  est <- optim(c(b_o, W_o, b_h, W_h),
               minSS,
               method = optim.method,
               control = control,
               data = dat)

  if (est$convergence > 0) warning("Optimizer failed to converge. Error code: ", est$convergence)

  # nlareg object ====
  b_o <- est$par[1]
  W_o <- est$par[2]
  b_h <- est$par[3]
  W_h <- est$par[-seq(3)]
  # change: replace with above
  .nla <- list(activation = activation,
               params = list(b_o = est$par[1],
                             W_o = est$par[2],
                             b_h = est$par[3],
                             W_h = est$par[-seq(3)]),
               formula = paste0(ddSci(b_o), " + ", ddSci(W_o), " * ",
                                fn.name, "(", ddSci(b_h), paste0(ifelse(W_h >= 0, " + ", " - "),
                                                                 ddSci(abs(W_h)), "*", colnames(x), collapse = ""), ")"),
               optim.method = optim.method)
  class(.nla) <- c("nlareg", "list")
  .nla

} # rtemis::nlareg

#' Predict method for \code{nlareg} object
#'
#' @param object \link{nlareg} object
#' @param newdata Data frame of predictors
#' @param ... Unused
#' @method predict nlareg
#' @author Efstathios D. Gennatas
#' @export

predict.nlareg <- function(object, newdata, ...) {

  xm <- data.matrix(newdata)
  b_o <- object$params$b_o
  W_o <- object$params$W_o
  b_h <- object$params$b_h
  W_h <- object$params$W_h
  yhat <- c(b_o + W_o * (object$activation(b_h + xm %*% W_h)))
  yhat

} # rtemis::predicr.nlareg
egenn/rtemis documentation built on April 3, 2020, 6:43 p.m.