library(devtools)
library(pkgdown)
library(goodpractice)
library(testthat)
document()
build()
check()
#gp()
spell_check()
#?build_website()
library(migraR)
library(dplyr)
library(tidyverse)
data("es_asmr")
data1 <- es_asmr[-c(1,2),c(1,6)]
colnames(data1) <- c("x","y")
fitted.val.7 <- best_migramod(dataIn = data1, maxite = 10, profile = "seven")
fitted.val.9 <- best_migramod(dataIn = data1, maxite = 10, profile = "nine")
fitted.val.11 <- best_migramod(dataIn = data1, maxite = 10, profile = "eleven")
fitted.val.13 <- best_migramod(dataIn = data1, maxite = 10, profile = "thirteen")
x11()
plot(data1, cex=0.1, xlab = 'Age',
ylab = 'Standarized Migration Rate')
lines(data1[,1],
fitted.val.7$modelClass$value(fitted.val.7$bestParam,data1),
col="blue")
lines(data1[,1],
fitted.val.9$modelClass$value(fitted.val.9$bestParam,data1),
col="orange")
lines(data1[,1],
fitted.val.11$modelClass$value(fitted.val.11$bestParam,data1),
col="blue", lty=3)
lines(data1[,1],
fitted.val.13$modelClass$value(fitted.val.13$bestParam,data1),
col="green")
legend('topright',
legend = c(paste("(7)", "MAPE:", round(as.numeric(fitted.val.7$bestMAPE),2),
"R²:", round(as.numeric(fitted.val.7$bestRcuad),3)),
paste("(9)", "MAPE:", round(as.numeric(fitted.val.9$bestMAPE),2),
"R²:", round(as.numeric(fitted.val.9$bestRcuad),3)),
paste("(11)", "MAPE:", round(as.numeric(fitted.val.11$bestMAPE),2),
"R²:", round(as.numeric(fitted.val.11$bestRcuad),3)),
paste("(13)", "MAPE:", round(as.numeric(fitted.val.13$bestMAPE),2),
"R²:", round(as.numeric(fitted.val.13$bestRcuad),3))),
col = c("red",'orange',"blue","darkgreen"), lty = c(2,6,3,5))
# Example using ggplot
expat.male <- ksmooth(es_asmr$age, es_asmr$male.foreign,
"normal", bandwidth = 5, x.points = es_asmr$age)
expat.female <- ksmooth(es_asmr$age, es_asmr$female.foreign,
"normal", bandwidth = 5, x.points = es_asmr$age)
interegional.male <- ksmooth(es_asmr$age, es_asmr$male.inter_regional,
"normal", bandwidth = 5, x.points = es_asmr$age)
interegional.female <- ksmooth(es_asmr$age, es_asmr$female.inter_regional,
"normal", bandwidth = 5, x.points = es_asmr$age)
intraprovince.male <- ksmooth(es_asmr$age, es_asmr$male.intra_province,
"normal", bandwidth = 5, x.points = es_asmr$age)
intraprovince.female <- ksmooth(es_asmr$age, es_asmr$female.intra_province,
"normal", bandwidth = 5, x.points = es_asmr$age)
#you must create first the data.frame
SpanishMig <- data.frame(Age= es_asmr$age,
Expat_female = expat.female$y,
Interegional_female = interegional.female$y,
Intraprovince_female = intraprovince.female$y)
#then the pivot_longer
rates.long <- SpanishMig %>%
pivot_longer(cols = 2:4, names_to = 'Type', values_to = "Rates_Smoothed")
#now ggplot
ggplot(data = rates.long, mapping= aes(x= Age, y= Rates_Smoothed, colour= Type)) +
geom_line()
######### Compare the smoothed curves of man and women of intra-province migration
SpanishMig <- data.frame(Age= es_asmr$age,
Intraprovince_male = intraprovince.male$y,
Intraprovince_female = intraprovince.female$y)
#then the pivot_longer
rates.long <- SpanishMig %>%
pivot_longer(cols = 2:3, names_to = 'Type', values_to = "Rates_Smoothed")
#now ggplot
ggplot(data = rates.long, mapping= aes(x= Age, y= Rates_Smoothed, colour= Type)) +
geom_line()
rates <- data.frame(Age = es_asmr$age,
Original = es_asmr$male.inter_regional,
Seven = fitted.val.7$modelClass$value(fitted.val.7$bestParam,data1),
Nine = fitted.val.7$modelClass$value(fitted.val.7$bestParam,data1),
Eleven = fitted.val.7$modelClass$value(fitted.val.7$bestParam,data1),
Thirteen = fitted.val.7$modelClass$value(fitted.val.7$bestParam,data1))
rates.long <- rates %>%
pivot_longer(cols = 2:6, names_to = 'Type', values_to = "Rates_OPTIM")
ggplot(data = rates.long, mapping= aes(x= Age, y= Rates_OPTIM, colour= Type)) +
geom_line()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.