Venn diagrams
 Technical details and regression checks

Jonathan Swinton

$23^{\text {rd }}$ September, 2009

- Try CR for weight=0
- Plot faces for Chow-Ruskey
- General set membership
- implement not showing dark matter eg Fig 1
- AWFE-book like figures
- likesquares argument for triangles
- central dark matter
- Comment on triangles
- Comment on AWFE
- text boxes
- use grob objects/printing properly
- cope with missing data including missing zero intersection;
- discuss Chow-Ruskey zero=nonsimple

1 Venn objects

```
> if ("package:Vennerable" %in% search()) detach("package:Vennerable")
> library(Vennerable)
> Vcombo <- Venn(SetNames = c("Female", "Visible Minority", "CS Major"),
+ Weight = c(0, 4148, 409, 604, 543, 67, 183, 146))
> setList <- strsplit(month.name, split = "")
> names(setList) <- month.name
> VN3 <- VennFromSets(setList[1:3])
> V2 <- VN3[, c("January", "February"), ]
> V4 <- VennFromSets(setList[1:4])
> V4f <- V4
> V4f@IndicatorWeight[, ".Weight"] <- 1
```

```
> setList <- strsplit(month.name, split = "")
> names(setList) <- month.name
> VN3 <- VennFromSets(setList[1:3])
> V2 <- VN3[, c("January", "February"), ]
> V3.big <- Venn(SetNames = month.name[1:3], Weight = 2^(1:8))
> V2.big <- V3.big[, c(1:2)]
> Vempty <- VennFromSets(setList[c(4, 5, 7)])
> Vempty2 <- VennFromSets(setList[c(4, 5, 11)])
> Vempty3 <- VennFromSets(setList[c(4, 5, 6)])
```


2 The VennDrawing object

This is created from a TissueDrawing object and a Venn object

```
> centre.xy <- c(0, 0)
> VDC1 <- newTissueFromCircle(centre.xy, radius = 2, Set = 1)
> VDC2 <- newTissueFromCircle(centre.xy + c(0, 1.5), radius = 1,
+ Set = 2)
> TM <- addSetToDrawing(drawing1 = VDC1, drawing2 = VDC2, set2Name = "Set2")
> VD2 <- new("VennDrawing", TM, V2)
```


3 Two circles

3.1 Two circles

Figure 1: Geometry of two overlapping circles

There is an intersection if $\left|r_{1}-r_{2}\right|<d<r_{1}+r_{2}$. If so and $d<\max \left(r_{1}, r_{2}\right)$ the centre of the smaller circle is in the interior of the larger. Either way we have the relationships

$$
\begin{aligned}
d_{1}^{2}+y^{2} & =r_{1}^{2} \\
d_{2}^{2}+y^{2} & =r_{2}^{2}
\end{aligned}
$$

If $\max \left(r_{1}, r_{2}\right)<d<r_{1}+r_{2}$ then $d=d_{1}+d_{2}$; if $\left|r_{1}-r_{2}\right|<d<\max \left(r_{1}, r_{2}\right)$ then $d=$ $\left|d_{1}-d_{2}\right|$.

We rely on the relationships

$$
\begin{aligned}
d_{1} & =\left(d^{2}-r_{2}^{2}+r_{1}^{2}\right) /(2 d) \\
d_{2} & =\left|d-d_{1}\right| \\
y & =\frac{1}{2 d} \sqrt{4 d^{2} r_{1}^{2}-\left(d^{2}-r_{2}^{2}+r_{1}^{2}\right)^{2}} \\
& =\sqrt{r_{1}^{2}-d_{1}^{2}}
\end{aligned}
$$

3.2 Weighted 2-set Venn diagrams for 2 Sets

3.2.1 Circles

It is always possible to get an exactly area-weighted solution for two circles as shown in Figure 2.

00	11	10	01
475.9979	271.9995	67.9992	135.9992

[1] "Area check passed"

Figure 2: Weighted 2d Venn

3.3 2-set Euler diagrams

3.3.1 Circles

00	11	10	01
7.1339724	3.8633868	0.1352894	3.1352961

Figure 3: Effect of the Euler and doWeights flags.

Figure 4: As before for a different set of weights

Figure 5: As before for a different set of weights

4 Two squares

4.0.2 Weights

$\begin{array}{llll}00 & 11 & 10 & 01\end{array}$
$476 \quad 272 \quad 68 \quad 136$

4.0.3 Squares

Unweighted Venn

Unweighted Euler

Weighted Venn

Weighted Euler
$\begin{array}{rrrr}00 & 11 & 10 & 01 \\ 7.4 & 3.6 & 0.4 & 3.4\end{array}$

5 Three circles

> plot(Vcombo, doWeights = FALSE, show = list(Faces = TRUE))

Figure 6: A three-circle Venn diagram

5.0.4 Weights

There is no general way of creating area-proportional 3-circle diagrams. The package makes an attempt to produce approximate ones.

000	001	101	100	111	110	011
6094.83358	537.83535	72.16413	4142.83542	140.83530	609.16384	188.16391
010						
403.83563						

[1] "Area check passed"

Figure 7: 3D Venn diagram. All of the areas are correct to within 10%

6 Three Triangles

The triangular Venn diagram on 3-sets lends itself nicely to an area-proportional drawing under some contrainsts on the weights
[1] "Area check passed"

Figure 8: Triangular Venn with external universe

6.1 Triangular Venn diagrams

6.1.1 Triangles

000100010111110001
$\begin{array}{llllll}12 & 2 & 3 & 2 & 2 & 3\end{array}$

Figure 9: 3d Venn triangular with one empty intersection

Figure 10: 3d Venn triangular with two empty intersection

Given a triangle $A B C$ of area Δ and some nonnegative weights $w_{a}+w_{b}+w_{c}<1$ we want to set s_{c}, s_{a} and s_{b} so that the areas of each of the apical triangles are Δ proportional to w_{a}, w_{b} and w_{c}. This means

$$
\begin{align*}
s_{c}\left(1-s_{b}\right) b c \sin A & =2 w_{a} \Delta \tag{1}\\
s_{a}\left(1-s_{c}\right) c a \sin B & =2 w_{b} \Delta \tag{2}\\
s_{b}\left(1-s_{a}\right) a b \sin C & =2 w_{c} \Delta \tag{3}
\end{align*}
$$

So

$$
\begin{align*}
& s_{c}\left(1-s_{b}\right)=w_{a} \tag{4}\\
& s_{a}\left(1-s_{c}\right)=w_{b} \tag{5}\\
& s_{b}\left(1-s_{a}\right)=w_{c} \tag{6}\\
& s_{b}=1-w_{a} / s_{c} \tag{7}\\
& s_{a}=w_{b} /\left(1-s_{c}\right) \tag{8}\\
&\left(s_{c}-w_{a}\right)\left(1-s_{c}-w_{b}\right)=s_{c}\left(1-s_{c}\right) w_{c} \tag{9}\\
& s_{c}^{2}\left(1-w_{c}\right)+s_{c}\left(w_{b}+w_{c}-w_{a}-1\right)+w_{a}\left(1-w_{b}\right)=0 \tag{10}
\end{align*}
$$

Iff

$$
\begin{equation*}
4 w_{a} w_{b} w_{c}<\left(1-\left(w_{a}+w_{b}+w_{c}\right)\right)^{2} \tag{11}
\end{equation*}
$$

this has two real solutions between w_{a} and $1-w_{b}$.
[1] TRUE

6.2 Three triangles

7 Three Squares

This is a version of the algorithm suggested by Chow Ruskey 2003
[1] "Area check passed"

Figure 11: Weighted 3-set Venn diagram based on the algorithm of [1]

7.1 Three squares

8 Four squares

8.1 Unweighted 4-set Venn diagrams

9 Chow-Ruskey

See [2, (1].
9.1 Chow-Ruskey diagrams for 3 sets
[1] "Area check passed"

[1] "Area check passed"

Figure 12: Chow-Ruskey CR3f
[1] "Area check passed"

Figure 13: Chow-Ruskey weighted 4-set diagram, produces an error if we try to plot signature face text
[1] "Area check passed"

Figure 14: Chow-Ruskey weighted 4-set diagram

The area of the sector $0 r_{1} r_{2}$ is $\frac{1}{2} r_{1} r_{2} \sin \phi$. The area of $0 r_{1} s_{2}$ is $\frac{1}{2}\left(r_{1}\left(r_{2}+\delta\right) \sin \phi\right)$ and so the area of $r_{1} r_{2} s_{2}$ is $\frac{1}{2}\left(r_{1} \delta \sin \phi\right)$.

The area of $r_{2} r_{2} s_{2} s_{3}$ is $\frac{1}{2}\left[\left(r_{3}+\boldsymbol{\delta}\right)\left(r_{2}+\boldsymbol{\delta}\right)-r_{3} r_{2}\right) \sin \boldsymbol{\phi}=\frac{1}{2}\left[\left(r_{3}+r_{2}\right) \boldsymbol{\delta}+\boldsymbol{\delta}^{2}\right] \sin \boldsymbol{\phi}$.
The total area of the outer shape is

$$
\begin{align*}
A & =\frac{1}{2}(\sin \phi)\left[\left(r_{1}+r_{n}\right) \delta+\sum_{k=2}^{n-2}\left[\left(r_{k+1}+r_{k}\right) \delta+\delta^{2}\right]\right] \tag{12}\\
& =\frac{1}{2}(\sin \phi)\left[\left(r_{1}+r_{n}\right) \delta+(n-2) \delta^{2}+\delta \sum_{k=2}^{n-2}\left[\left(r_{k+1}+r_{k}\right)\right]\right] \tag{13}\\
& =\frac{1}{2}(\sin \phi)\left[\left(r_{1}+r_{2}+2 r_{3}+\ldots+2 r_{n-2}+r_{n-1}+r_{n}\right) \delta+(n-3) \delta^{2}\right] \tag{14}
\end{align*}
$$

so

$$
\begin{align*}
0 & =c_{a} \delta^{2}+c_{b} \delta+c_{c} \tag{15}\\
c_{a} & =n-3 \tag{16}\\
c_{b} & =r_{1}+r_{2}+2 r_{3}+\ldots+2 r_{n-2}+r_{n-1}+r_{n} \tag{17}\\
c_{c} & =-A / \frac{1}{2} \sin \phi \tag{18}
\end{align*}
$$

This is implemented in the compute.delta function.

If all the r s are the same then $c_{b}=[2(n-3)+4] r=(2 n-2) r$.
[1] "Area check passed"

Figure 15: Chow-Ruskey 4

10 Euler diagrams

10.1 3-set Euler diagrams

10.1.1 Other examples of circles

Figure 16: TODO Big weighted 3d Venn fails

11 Error checking

These should fail

```
> print(try(Venn(numberOfSets = 3, Weight = 1:7)))
[1] "Error in Venn(numberOfSets = 3, Weight = 1:7) : \n Weight length does not match numb
attr(,"class")
[1] "try-error"
> print(try(V3[1, ]))
[1] "Error in V3[1, ] : Can't subset on rows\n"
attr(,"class")
[1] "try-error"
Empty objects work
> VO = Venn()
> (Weights(VO))
named numeric(0)
> VennSetNames(VO)
character(0)
```


12 This document

Author	Jonathan Swinton
SVN id of this document	Id: VennDrawingTest.Rnw 57 2009-09-18 17:14:09Z js229 .
Generated on	$23^{\text {rd }}$ September, 2009
R version	R version 2.9.0 (2009-04-17)

References

[1] Stirling Chow and Frank Ruskey. Drawing area-proportional Venn and Euler diagrams. In Giuseppe Liotta, editor, Graph Drawing, volume 2912 of Lecture Notes in Computer Science, pages 466-477. Springer, 2003.
[2] Stirling Chow and Frank Ruskey. Towards a general solution to drawing areaproportional Euler diagrams. Electronic Notes in Theoretical Computer Science, 134:3-18, 2005.

