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1 Introduction

In this manual, we will show how to use the methylKit package. methylKit is an
R package for analysis and annotation of DNA methylation information obtained
by high-throughput bisulfite sequencing. The package is designed to deal with
sequencing data from RRBS and its variants. But it can potentially handle
whole-genome bisulfite sequencing data if proper input format is provided.

1.1 DNA methylation

DNA methylation in vertebrates typically occurs at CpG dinucleotides, however
non-CpG Cs are also methylated in certain tissues such as embryonic stem cells.
DNA methylation can act as an epigenetic control mechanism for gene regula-
tion. Methylation can hinder binding of transcription factors and/or methylated
bases can be bound by methyl-binding-domain proteins which can recruit chro-
matin remodeling factors. In both cases, the transcription of the regulated gene
will be effected. In addition, aberrant DNA methylation patterns have been as-
sociated with many human malignancies and can be used in a predictive manner.
In malignant tissues, DNA is either hypo-methylated or hyper-methylated com-
pared to the normal tissue. The location of hyper- and hypo-methylated sites
gives a distinct signature to many diseases. Traditionally, hypo-methylation
is associated with gene transcription (if it is on a regulatory region such as
promoters) and hyper-methylation is associated with gene repression.
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1.2 High-throughput bisulfite sequencing

Bisulfite sequencing is a technique that can determine DNA methylation pat-
terns. The major difference from regular sequencing experiments is that, in
bisulfite sequencing DNA is treated with bisulfite which converts cytosine residues
to uracil, but leaves 5-methylcytosine residues unaffected. By sequencing and
aligning those converted DNA fragments it is possible to call methylation status
of a base. Usually, the methylation status of a base determined by a high-
throughput bisulfite sequencing will not be a binary score, but it will be a
percentage. The percentage simply determines how many of the bases that are
aligning to a given cytosine location in the genome have actual C bases in the
reads. Since bisulfite treatment leaves methylated Cs intact, that percentage will
give us percent methylation score on that base. The reasons why we will not
get a binary response are 1) the probable sequencing errors in high-throughput
sequencing experiments 2) incomplete bisulfite conversion 3) (and a more likely
scenario) is heterogeneity of samples and heterogeneity of paired chromosomes
from the same sample

2 Basics

2.1 Reading the methylation call files

We start by reading in the methylation call data from bisulfite sequencing with
read function. Reading in the data this way will return a methylRawList object
which stores methylation information per sample for each covered base. The
methylation call files are basically text files that contain percent methylation
score per base. A typical methylation call file looks like this:

chrBase chr base strand coverage freqC freqT

1 chr21.9764539 chr21 9764539 R 12 25.00 75.00

2 chr21.9764513 chr21 9764513 R 12 0.00 100.00

3 chr21.9820622 chr21 9820622 F 13 0.00 100.00

4 chr21.9837545 chr21 9837545 F 11 0.00 100.00

5 chr21.9849022 chr21 9849022 F 124 72.58 27.42

Most of the time bisulfite sequencing experiments have test and control sam-
ples. The test samples can be from a disease tissue while the control samples
can be from a healthy tissue. You can read a set of methylation call files that
have test/control conditions giving treatment vector option. For sake of sub-
sequent analysis, file.list, sample.id and treatment option should have the same
order. In the following example, first two files are have the sample ids ”test1”
and ”test2” and as determined by treatment vector they belong to the same
group. The third and fourth files have sample ids ”ctrl1” and ”ctrl2” and they
belong to the same group as indicated by the treatment vector.

> library(methylKit)

> file.list=list( system.file("extdata", "test1.myCpG.txt", package = "methylKit"),
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+ system.file("extdata", "test2.myCpG.txt", package = "methylKit"),

+ system.file("extdata", "control1.myCpG.txt", package = "methylKit"),

+ system.file("extdata", "control2.myCpG.txt", package = "methylKit") )

> # read the files to a methylRawList object: myobj

> myobj=read(file.list,

+ sample.id=list("test1","test2","ctrl1","ctrl2"),

+ assembly="hg18",

+ treatment=c(1,1,0,0),

+ context="CpG"

+ )

>

>

2.2 Reading the methylation calls from sorted Bismark
alignments

Alternatively, methylation percentage calls can be calculated from sorted SAM
file(s) from Bismark aligner and read-in to the memory. Bismark is a popular
aligner for bisulfite sequencing reads [1]. read.bismark function is designed to
read-in Bismark SAM files as methylRaw or methylRawList objects which store
per base methylation calls. SAM files must be sorted by chromosome and read
position columns, using ’sort’ command in unix-like machines will accomplish
such a sort easily.

The following command reads a sorted SAM file and creates a methylRaw

object for CpG methylation.The user has the option to save the methylation call
files to a folder given by save.folder option. The saved files can be read-in
using the read function when needed.

> my.methRaw=read.bismark(

+ location=system.file("extdata", "test.fastq_bismark.sorted.min.sam",

+ package = "methylKit"),

+ sample.id="test1",assembly="hg18",read.context="CpG",save.folder=getwd())

It is also possible to read multiple SAM files at the same time, check read.bismark

documentation.

2.3 Descriptive statistics on samples

Since we read the methylation data now, we can check the basic stats about
the methylation data such as coverage and percent methylation. We now have a
methylRawList object which contains methylation information per sample. The
following command prints out percent methylation statistics for second sample:
”test2”

> getMethylationStats(myobj[[2]],plot=F,both.strands=F)
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methylation statistics per base

summary:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 20.00 82.79 63.17 94.74 100.00

percentiles:

0% 10% 20% 30% 40% 50% 60% 70%

0.00000 0.00000 0.00000 48.38710 70.00000 82.78556 90.00000 93.33333

80% 90% 95% 99% 99.5% 99.9% 100%

96.42857 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000

The following command plots the histogram for percent methylation dis-
tribution.The figure below is the histogram and numbers on bars denote what
percentage of locations are contained in that bin. Typically, percent methyla-
tion histogram should have two peaks on both ends. In any given cell, any given
base are either methylated or not. Therefore, looking at many cells should yield
a similar pattern where we see lots of locations with high methylation and lots
of locations with low methylation.

> getMethylationStats(myobj[[2]],plot=T,both.strands=F)

Histogram of % CpG methylation
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We can also plot the read coverage per base information in a similar way,
again numbers on bars denote what percentage of locations are contained in
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that bin. Experiments that are highly suffering from PCR duplication bias will
have a secondary peak towards the right hand side of the histogram.

> library ("graphics")

> getCoverageStats(myobj[[2]],plot=T,both.strands=F)

Histogram of CpG coverage
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2.4 Filtering samples based on read coverage

It might be useful to filter samples based on coverage. Particularly, if our
samples are suffering from PCR bias it would be useful to discard bases with
very high read coverage. Furthermore, we would also like to discard bases that
have low read coverage, a high enough read coverage will increase the power of
the statistical tests. The code below filters a methylRawList and discards bases
that have coverage below 10X and also discards the bases that have more than
99.9th percentile of coverage in each sample.

> filtered.myobj=filterByCoverage(myobj,lo.count=10,lo.perc=NULL,

+ hi.count=NULL,hi.perc=99.9)
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3 Comparative analysis

3.1 Merging samples

In order to do further analysis, we will need to get the bases covered in all
samples. The following function will merge all samples to one object for base-
pair locations that are covered in all samples. Setting destrand=TRUE (the
default is FALSE) will merge reads on both strands of a CpG dinucleotide. This
provides better coverage, but only advised when looking at CpG methylation
(for CpH methylation this will cause wrong results in subsequent analyses). In
addition, setting destrand=TRUE will only work when operating on base-pair
resolution, otherwise setting this option TRUE will have no effect. The unite()
function will return a methylBase object which will be our main object for all
comparative analysis. The methylBase object contains methylation information
for regions/bases that are covered in all samples.

> meth=unite(myobj, destrand=FALSE)

Let us take a look at the data content of methylBase object:

> head(meth)

methylBase object with 6 rows

--------------

chr start end strand coverage1 numCs1 numTs1 coverage2 numCs2 numTs2

1 chr21 9853296 9853296 + 17 10 7 333 268 65

2 chr21 9853326 9853326 + 17 12 5 329 249 79

3 chr21 9860126 9860126 + 39 38 1 83 78 5

4 chr21 9906604 9906604 + 68 42 26 111 97 14

5 chr21 9906616 9906616 + 68 52 16 111 104 7

6 chr21 9906619 9906619 + 68 59 9 111 109 2

coverage3 numCs3 numTs3 coverage4 numCs4 numTs4

1 18 16 2 395 341 54

2 16 14 2 379 284 95

3 83 83 0 41 40 1

4 23 18 5 37 33 4

5 23 14 9 37 27 10

6 22 18 4 37 29 8

--------------

sample.ids: test1 test2 ctrl1 ctrl2

destranded FALSE

assembly: hg18

context: CpG

treament: 1 1 0 0

resolution: base

By default, unite function produces bases/regions covered in all samples.
That requirement can be relaxed using ”min.per.group” option in unite func-
tion.

7



> # creates a methylBase object. Only CpGs covered at least in 1 sample per group will be returned

> # there were two groups defined by the treatment vector given during the creation of myobj treatment=c(1,1,0,0)

> meth.min=unite(myobj,min.per.group=1L)

3.2 Sample Correlation

We can check the correlation between samples using getCorrelation. This
function will either plot scatter plot and correlation coefficients or just print a
correlation matrix

> getCorrelation(meth,plot=T)

test1 test2 ctrl1 ctrl2

test1 1.0000000 0.9252530 0.8767865 0.8737509

test2 0.9252530 1.0000000 0.8791864 0.8801669

ctrl1 0.8767865 0.8791864 1.0000000 0.9465369

ctrl2 0.8737509 0.8801669 0.9465369 1.0000000
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3.3 Clustering samples

We can cluster the samples based on the similarity of their methylation profiles.
The following function will cluster the samples and draw a dendrogram.
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> clusterSamples(meth, dist="correlation", method="ward", plot=TRUE)

Call:

hclust(d = d, method = HCLUST.METHODS[hclust.method])

Cluster method : ward

Distance : pearson

Number of objects: 4
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Setting the plot=FALSE will return a dendrogram object which can be ma-
nipulated by users or fed in to other user functions that can work with dendro-
grams.

> hc = clusterSamples(meth, dist="correlation", method="ward", plot=FALSE)

We can also do a PCA analysis on our samples. The following function will plot
a scree plot for importance of components.

> PCASamples(meth, screeplot=TRUE)
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CpG methylation PCA Screeplot
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We can also plot PC1 and PC2 axis and a scatter plot of our samples on those
axis which will reveal how they cluster.

> PCASamples(meth)
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3.4 Batch effects

We have implemented some rudimentary functionality for batch effect control.
You can check which one of the principal components are statistically associated
with the potential batch effects such as batch processing dates, age of subjects,
sex of subjects using assocComp. The function gets principal components from
the percent methylation matrix derived from the input methylBase object, and
checks for association. The tests for association are either via Kruskal-Wallis
test or Wilcoxon test for categorical attributes and correlation test for numerical
attributes for samples such as age. If you are convinced that some principal
components are accounting for batch effects, you can remove those principal
components from your data using removeComp.

> # make some batch data frame

> # this is a bogus data frame

> # we don't have batch information

> # for the example data

> sampleAnnotation=data.frame(batch_id=c("a","a","b","b"),

+ age=c(19,34,23,40))

> as=assocComp(mBase=meth,sampleAnnotation)

> as

11



$pcs

PC1 PC2 PC3 PC4

test1 -0.4978699 -0.5220504 0.68923849 -0.06737363

test2 -0.4990924 -0.4805506 -0.71827964 0.06365693

ctrl1 -0.5016543 0.4938800 0.08068700 0.70563101

ctrl2 -0.5013734 0.5026102 -0.05014261 -0.70249091

$vars

[1] 92.271885 4.525328 1.870950 1.331837

$association

PC1 PC2 PC3 PC4

batch_id 0.3333333 0.3333333 1.0000000 1.0000000

age 0.5864358 0.6794346 0.3140251 0.3467957

> # construct a new object by removing the first pricipal component

> # from percent methylation value matrix

> newObj=removeComp(meth,comp=1)

In addition to the methods described above, if you have used other ways to cor-
rect for batch effects and obtained a corrected percent methylation matrix, you
can use reconstruct function to reconstruct a corrected methylBase object.
Users have to supply a corrected percent methylation matrix and methylBase

object (where the uncorrected percent methylation matrix obtained from) to
the reconstruct function. Corrected percent methylation matrix should have
the same row and column order as the original percent methylation matrix. All
of these functions described in this section work on a methylBase object that
does not have missing values (that means all bases in methylBase object should
have coverage in all samples).

> mat=percMethylation(meth)

> # do some changes in the matrix

> # this is just a toy example

> # ideally you want to correct the matrix

> # for batch effects

> mat[mat==100]=80

> # reconstruct the methylBase from the corrected matrix

> newobj=reconstruct(mat,meth)

>

3.5 Tiling windows analysis

For some situations, it might be desirable to summarize methylation information
over tiling windows rather than doing base-pair resolution analysis. methylKit
provides functionality to do such analysis. The function below tiles the genome
with windows 1000bp length and 1000bp step-size and summarizes the methyla-
tion information on those tiles. In this case, it returns a methylRawList object
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which can be fed into unite and calculateDiffMeth functions consecutively
to get differentially methylated regions. The tilling function adds up C and T
counts from each covered cytosine and returns a total C and T count for each
tile.

> tiles=tileMethylCounts(myobj,win.size=1000,step.size=1000)

> head(tiles[[1]],3)

methylRaw object with 3 rows

--------------

chr start end strand coverage numCs numTs

1 chr21 9764001 9765000 * 24 3 21

2 chr21 9820001 9821000 * 13 0 13

3 chr21 9837001 9838000 * 11 0 11

--------------

sample.id: test1

assembly: hg18

context: CpG

resolution: region

3.6 Finding differentially methylated bases or regions

calculateDiffMeth() function is the main function to calculate differential
methylation. Depending on the sample size per each set it will either use Fisher’s
exact or logistic regression to calculate P-values. P-values will be adjusted to
Q-values using SLIM method [2].

> myDiff=calculateDiffMeth(meth)

After q-value calculation, we can select the differentially methylated re-
gions/bases based on q-value and percent methylation difference cutoffs. Fol-
lowing bit selects the bases that have q-value<0.01 and percent methylation
difference larger than 25%. If you specify type="hyper" or type="hypo" op-
tions, you will get hyper-methylated or hypo-methylated regions/bases.

> # get hyper methylated bases

> myDiff25p.hyper=get.methylDiff(myDiff,difference=25,qvalue=0.01,type="hyper")

> #

> # get hypo methylated bases

> myDiff25p.hypo=get.methylDiff(myDiff,difference=25,qvalue=0.01,type="hypo")

> #

> #

> # get all differentially methylated bases

> myDiff25p=get.methylDiff(myDiff,difference=25,qvalue=0.01)

We can also visualize the distribution of hypo/hyper-methylated bases/regions
per chromosome using the following function. In this case, the example set
includes only one chromosome. The list shows percentages of hypo/hyper
methylated bases over all the covered bases in a given chromosome.
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> diffMethPerChr(myDiff,plot=FALSE,qvalue.cutoff=0.01, meth.cutoff=25)

$diffMeth.per.chr

chr number.of.hypomethylated percentage.of.hypomethylated

1 chr21 59 6.126687

number.of.hypermethylated percentage.of.hypermethylated

1 75 7.788162

$diffMeth.all

percentage.of.hypermethylated number.of.hypermethylated

1 7.788162 75

percentage.of.hypomethylated number.of.hypomethylated

1 6.126687 59

3.6.1 Finding differentially methylated bases using multiple-cores

The differential methylation calculation speed can be increased substantially by
utilizing multiple-cores in a machine if available. Both Fisher’s Exact test and
logistic regression based test are able to use multiple-core option.
The following piece of code will run differential methylation calculation using 2
cores.

> myDiff=calculateDiffMeth(meth,num.cores=2)

4 Annotating differentially methylated bases or
regions

We can annotate our differentially methylated regions/bases based on gene an-
notation. In this example, we read the gene annotation from a bed file and
annotate our differentially methylated regions with that information. This will
tell us what percentage of our differentially methylated regions are on promot-
ers/introns/exons/intergenic region. Similar gene annotation can be fetched
using GenomicFeatures package available from Bioconductor.org.

> gene.obj=read.transcript.features(system.file("extdata", "refseq.hg18.bed.txt",

+ package = "methylKit"))

> #

> # annotate differentially methylated Cs with promoter/exon/intron using annotation data

> #

> annotate.WithGenicParts(myDiff25p,gene.obj)

summary of target set annotation with genic parts

133 rows in target set

--------------

--------------

percentage of target features overlapping with annotation :

14



promoter exon intron intergenic

27.81955 15.03759 34.58647 57.14286

percentage of target features overlapping with annotation (with promoter>exon>intron precedence) :

promoter exon intron intergenic

27.81955 0.00000 15.03759 57.14286

percentage of annotation boundaries with feature overlap :

promoter exon intron

0.28604119 0.02683483 0.17068273

summary of distances to the nearest TSS :

Min. 1st Qu. Median Mean 3rd Qu. Max.

5 828 45160 52030 94640 313500

Similarly, we can read the CpG island annotation and annotate our differ-
entially methylated bases/regions with them.

> # read the shores and flanking regions and name the flanks as shores

> # and CpG islands as CpGi

> cpg.obj=read.feature.flank(system.file("extdata", "cpgi.hg18.bed.txt",

+ package = "methylKit"),

+ feature.flank.name=c("CpGi","shores"))

> #

> #

> diffCpGann=annotate.WithFeature.Flank(myDiff25p,cpg.obj$CpGi,cpg.obj$shores,

+ feature.name="CpGi",flank.name="shores")

4.1 Regional analysis

We can also summarize methylation information over a set of defined regions
such as promoters or CpG islands. The function below summarizes the methyla-
tion information over a given set of promoter regions and outputs a methylRaw

or methylRawList object depending on the input.

> promoters=regionCounts(myobj,gene.obj$promoters)

> head(promoters[[1]])

methylRaw object with 6 rows

--------------

chr start end strand coverage numCs numTs

1 chr21 17806094 17808094 + 1834 7 1827

2 chr21 10119796 10121796 - 79 44 35

3 chr21 10011791 10013791 - 3697 2982 715
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4 chr21 10119808 10121808 - 79 44 35

5 chr21 15357997 15359997 - 8613 16 8594

6 chr21 16023366 16025366 + 6296 5 6291

--------------

sample.id: test1

assembly: hg18

context: CpG

resolution: region

4.2 Convenience functions for annotation objects

After getting the annotation of differentially methylated regions, we can get
the distance to TSS and nearest gene name using the getAssociationWithTSS

function.

> diffAnn=annotate.WithGenicParts(myDiff25p,gene.obj)

> # target.row is the row number in myDiff25p

> head(getAssociationWithTSS(diffAnn))

target.row dist.to.feature feature.name feature.strand

60 1 106111 NM_199260 -

60.1 2 106098 NM_199260 -

60.2 3 106092 NM_199260 -

60.3 4 105919 NM_199260 -

60.4 5 85265 NM_199260 -

60.5 6 68287 NM_199260 -

It is also desirable to get percentage/number of differentially methylated
regions that overlap with intron/exon/promoters

> getTargetAnnotationStats(diffAnn,percentage=TRUE,precedence=TRUE)

promoter exon intron intergenic

27.81955 0.00000 15.03759 57.14286

We can also plot the percentage of differentially methylated bases overlap-
ping with exon/intron/promoters

> plotTargetAnnotation(diffAnn,precedence=TRUE,

+ main="differential methylation annotation")
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We can also plot the CpG island annotation the same way. The plot below
shows what percentage of differentially methylated bases are on CpG islands,
CpG island shores and other regions.

> plotTargetAnnotation(diffCpGann,col=c("green","gray","white"),

+ main="differential methylation annotation")
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It might be also useful to get percentage of intron/exon/promoters that
overlap with differentially methylated bases.

> getFeatsWithTargetsStats(diffAnn,percentage=TRUE)

promoter exon intron

0.28604119 0.02683483 0.17068273

5 methylKit convenience functions

5.1 coercion

Most methylKit objects (methylRaw,methylBase and methylDiff) can be co-
erced to GRanges objects from GenomicRanges package. Coercing methylKit
objects to GRanges will give users additional flexibility when customizing their
analyses.

> class(meth)

[1] "methylBase"

attr(,"package")

[1] "methylKit"
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> as(meth,"GRanges")

GRanges with 963 ranges and 12 metadata columns:

seqnames ranges strand | coverage1 numCs1 numTs1

<Rle> <IRanges> <Rle> | <integer> <numeric> <numeric>

[1] chr21 [9853296, 9853296] + | 17 10 7

[2] chr21 [9853326, 9853326] + | 17 12 5

[3] chr21 [9860126, 9860126] + | 39 38 1

[4] chr21 [9906604, 9906604] + | 68 42 26

[5] chr21 [9906616, 9906616] + | 68 52 16

... ... ... ... ... ... ... ...

[959] chr21 [19855690, 19855690] + | 27 26 1

[960] chr21 [19855706, 19855706] + | 27 27 0

[961] chr21 [19855711, 19855711] + | 18 18 0

[962] chr21 [19943653, 19943653] + | 12 12 0

[963] chr21 [19943695, 19943695] + | 12 11 1

coverage2 numCs2 numTs2 coverage3 numCs3 numTs3 coverage4

<integer> <numeric> <numeric> <integer> <numeric> <numeric> <integer>

[1] 333 268 65 18 16 2 395

[2] 329 249 79 16 14 2 379

[3] 83 78 5 83 83 0 41

[4] 111 97 14 23 18 5 37

[5] 111 104 7 23 14 9 37

... ... ... ... ... ... ... ...

[959] 19 17 2 34 34 0 12

[960] 19 19 0 34 34 0 12

[961] 18 15 3 34 34 0 12

[962] 32 30 2 26 25 1 24

[963] 32 32 0 26 26 0 27

numCs4 numTs4

<numeric> <numeric>

[1] 341 54

[2] 284 95

[3] 40 1

[4] 33 4

[5] 27 10

... ... ...

[959] 12 0

[960] 11 1

[961] 12 0

[962] 22 2

[963] 24 3

---

seqlengths:

chr21

NA
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> class(myDiff)

[1] "methylDiff"

attr(,"package")

[1] "methylKit"

> as(myDiff,"GRanges")

GRanges with 963 ranges and 2 metadata columns:

seqnames ranges strand | qvalue

<Rle> <IRanges> <Rle> | <numeric>

[1] chr21 [9853296, 9853296] + | 0.0215658126063664

[2] chr21 [9853326, 9853326] + | 0.592173028310101

[3] chr21 [9860126, 9860126] + | 0.0697808391745445

[4] chr21 [9906604, 9906604] + | 0.259453089661393

[5] chr21 [9906616, 9906616] + | 0.00432220069940899

... ... ... ... ... ...

[959] chr21 [19855690, 19855690] + | 0.0660274910679262

[960] chr21 [19855706, 19855706] + | 0.282958728725395

[961] chr21 [19855711, 19855711] + | 0.0446545923565476

[962] chr21 [19943653, 19943653] + | 0.592173028310101

[963] chr21 [19943695, 19943695] + | 0.396045532748492

meth.diff

<numeric>

[1] -7.01210653753026

[2] -0.00951196312286129

[3] -4.11158117398202

[4] -7.3463687150838

[5] 18.8175046554935

... ...

[959] -6.52173913043478

[960] 2.17391304347827

[961] -8.33333333333333

[962] 1.45454545454545

[963] 3.3876500857633

---

seqlengths:

chr21

NA

5.2 select

We can also select rows from methylRaw, methylBase and methylDiff objects
with ”select” function. An appropriate methylKit object will be returned as
a result of ”select” function. Or you can use the ”[” notation to subset the
methylKit objects.
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> select(meth,1:5) # get first 10 rows of a methylBase object

methylBase object with 5 rows

--------------

chr start end strand coverage1 numCs1 numTs1 coverage2 numCs2 numTs2

1 chr21 9853296 9853296 + 17 10 7 333 268 65

2 chr21 9853326 9853326 + 17 12 5 329 249 79

3 chr21 9860126 9860126 + 39 38 1 83 78 5

4 chr21 9906604 9906604 + 68 42 26 111 97 14

5 chr21 9906616 9906616 + 68 52 16 111 104 7

coverage3 numCs3 numTs3 coverage4 numCs4 numTs4

1 18 16 2 395 341 54

2 16 14 2 379 284 95

3 83 83 0 41 40 1

4 23 18 5 37 33 4

5 23 14 9 37 27 10

--------------

sample.ids: test1 test2 ctrl1 ctrl2

destranded FALSE

assembly: hg18

context: CpG

treament: 1 1 0 0

resolution: base

> myDiff[21:25,] # get 5 rows of a methylDiff object

methylDiff object with 5 rows

--------------

chr start end strand pvalue qvalue meth.diff

21 chr21 9913543 9913543 + 1.254379e-02 2.632641e-02 -13.343109

22 chr21 9913575 9913575 + 2.755448e-01 3.161628e-01 -5.442623

23 chr21 9927527 9927527 + 1.120126e-07 9.257475e-07 -46.109840

24 chr21 9944505 9944505 + 0.000000e+00 0.000000e+00 -51.017943

25 chr21 9944663 9944663 - 1.790779e-05 7.678302e-05 -28.099911

--------------

sample.ids: test1 test2 ctrl1 ctrl2

destranded FALSE

assembly: hg18

context: CpG

treament: 1 1 0 0

resolution: base

5.3 reorganize

methylBase and methylRawList can be reorganized by reorganize function.
The function can subset the objects based on provided sample ids, it also cre-
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ates a new treatment vector determining which samples belong to which group.
Order of sample ids should match the treatment vector order.

> # creates a new methylRawList object

> myobj2=reorganize(myobj,sample.ids=c("test1","ctrl2"),treatment=c(1,0) )

> # creates a new methylBase object

> meth2 =reorganize(meth,sample.ids=c("test1","ctrl2"),treatment=c(1,0) )

5.4 percMethylation

Percent methylation values can be extracted from methylBase object by using
percMethylation function.

> # creates a matrix containing percent methylation values

> perc.meth=percMethylation(meth)

6 Frequently Asked Questions

Detailed answers to some of the frequently asked questions and various how-tos
can be found at http://zvfak.blogspot.com/search/label/methylKit. In
addition, http://code.google.com/p/methylkit/ has online documentation
and links to tutorials and other related material. You can also check methylKit
Q&A forum for answers https://groups.google.com/forum/#!forum/methylkit_
discussion.

Apart from those here are some of the frequently asked questions.

6.1 How can I select certain regions/bases from methylRaw

or methylBase objects ?

see ?select or help("[", package = "methylKit")

6.2 How can I find if my regions of interest overlap with
exon/intron/promoter/CpG island etc.?

Currently, we will be able to tell you if your regions/bases overlap with the
genomic features or not. see ?getMembers.

6.3 How can I find the nearest TSS associated with my
CpGs

see ?getAssociationWithTSS
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6.4 How do you define promoters and CpG island shores

Promoters are defined by options at read.transcript.features function. The
default option is to take -1000,+1000bp around the TSS and you can change
that. Same goes for CpG islands when reading them in via read.feature.flank

function. Default is to take 2000bp flanking regions on each side of the CpG
island as shores. But you can change that as well.

6.5 What does Bismark SAM output look like, where can
I get more info?

Check the Bismark [1] website and there are also example files that ship with the
package. Look at their formats and try to run different variations of read.bismark()
command on the example files.

6.6 How can I reorder or remove samples at/from methyl-

RawList or methylBase objects ?

see ?reorganize

6.7 Should I normalize my data?

methylKit comes with a simple normalizeCoverage() function to normalize
read coverage distributions between samples. Ideally, you should first filter
bases with extreme coverage to account for PCR bias using filterByCover-

age() function, then run normalizeCoverage() function to normalize coverage
between samples. These two functions will help reduce the bias in the statisti-
cal tests that might occur due to systematic over-sampling of reads in certain
samples.

6.8 How can I force methylKit to use Fisher’s exact test?

methylKit decides which test to use based on number of samples per group. In
order to use Fisher’s exact there must be one sample in each of the test and
control groups. So if you have multiple samples for group, the package will
employ Logistic Regression based test. However, you can use pool() function
to pool samples in each group so that you have one representative sample per
group. pool() function will sum up number of Cs and Ts in each group. We
recommend using filterByCoverage() and normalizeCoverage() functions
prior to using pool(). see ?pool

6.9 Can use data from other aligners than Bismark in
methylKit ?

Yes, you can. methylKit can read any generic methylation percentage/ratio file
as long as that text file contains columns for chromosome, start, end, strand,
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coverage and number of methylated cytosines. However, methylKit can only
process SAM files from Bismark. For other aligners, you need to get a text file
containing the minimal information described above. Some aligners will come
with scripts or built-in tools to provide such files. See http://zvfak.blogspot.
com/2012/10/how-to-read-bsmap-methylation-ratio.html for how to read
methylation ratio files from BSMAP [3] aligner.
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8 R session info

> sessionInfo()

R version 3.0.2 (2013-09-25)

Platform: x86_64-apple-darwin10.8.0 (64-bit)

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] methylKit_0.9.1

loaded via a namespace (and not attached):

[1] BiocGenerics_0.8.0 data.table_1.8.10 GenomicRanges_1.14.1

[4] IRanges_1.20.0 KernSmooth_2.23-10 parallel_3.0.2

[7] stats4_3.0.2 tools_3.0.2 XVector_0.2.0
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