QICD: Iterative Coordinate Descent Algorithm for High-dimensional Nonconvex Penalized Quantile Regression

Bo Peng

8 November 2014

The QICD algorithm combines the idea of the Majorization Minimization (MM) algorithm with that of the coordinate descent algorithm. More specifically, we first replace the non-convex penalty function by its majorization function to create a surrogate objective function. Then we minimize the surrogate objective function with respect to a single parameter at each time and cycle through all parameters until convergence. For each univariate minimization problem, we only need to compute a one-dimensional weighted median, which ensures fast computation. See Peng and Wang (2014), for more details. We introduce a new R package QICD which implements this iterative coordinate descent algorithm on non-convex penalized quantile regression model. The QICD package implements High dimensional BIC (HBIC, see Lee,Noh and Park (2014)) and k fold cross validation as tuning parameter selection criterion.

This vignette contains only a brief introduction to utilize QICD to solve non-convex penalized quantile regression under high-dimensional settings. We consider a random sample $\{Y_i, \mathbf{x}_i\}, i = 1, 2, \ldots, n$ and assume $Y_i = \mathbf{x}_i^T \boldsymbol{\beta} + \epsilon_i$, where $\mathbf{x}_i = (x_{i0}, x_{i1}, \ldots, x_{ip})^T$ is a (p+1)-dimensional vector of covariates with $x_{i0} = 1$, $\boldsymbol{\beta} = (\beta_0, \beta_1, \ldots, \beta_p)^T$ is the vector of parameters, and ϵ_i is the random error. The true value $\boldsymbol{\beta}$ is assumed to be sparse in the sense most of its components are equal to zero. We are interested in identifying and estimating the nonzero component of $\boldsymbol{\beta}$ when p >> n.

A popular approach of solving this problem is to use penalized quantile regression for largescale data analysis. The penalized quantile regression estimator for β is obtained by minimizing

$$Q(\boldsymbol{\beta}) = n^{-1} \sum_{i=1}^{n} \rho_{\tau} (Y_i - \mathbf{x}_i^T \boldsymbol{\beta}) + \sum_{j=1}^{p} p_{\lambda}(|\beta_j|)$$

where $\rho_{\tau}(u) = u\{\tau - I(u < 0)\}$ is the check loss function. The tuning parameter λ in the penalty function $p_{\lambda}(\cdot)$ controls the model complexity and goes to zero at an approximate rate. In this vignette, we only consider a general class of nonconvex penalty function, which in particular includes the two popular nonconvex penalty is: SCAD and MCP. The SCAD penalty function Fan and Li (2001) is defined by

$$p_{\lambda}(|\beta|) = \lambda|\beta|I(0 \le |\beta| < \lambda) + \frac{a\lambda|\beta| - (\beta^2 + \lambda^2)/2}{a - 1}I(\lambda \le |\beta| \le a\lambda) + \frac{(a + 1)\lambda^2}{2}I(|\beta| > a\lambda|)$$

for some a > 2; while the MCP penalty function Zhang (2010) has the form

$$p_{\lambda}(|\beta|) = \lambda(|\beta| - \frac{\beta^2}{2a\lambda})I(0 \le |\beta| < a\lambda) + \frac{a\lambda^2}{2}I(|\beta| \ge a\lambda)$$

for some a > 1. Both penalty functions are singular at the origin to achieve sparsity of estimation. They also both remain constant when $|\beta|$ exceeds $a\lambda$, which avoids over-penalizing large coefficients and alleviates the bias problem associated with Lasso.

To implement our package, we use the same setting in Peng and Wang (2014). To generate the covariates X_1, X_2, \ldots, X_p , we first generate $(\tilde{X}_1, \tilde{X}_2, \ldots, \tilde{X}_p)^T$ from the multivariate normal

distribution $N_p(0, \Sigma)$ with $\Sigma = (\sigma_{jk})_{p \times p}$ and $\sigma_{jk} = 0.5^{|j-k|}$. Then we set $X_1 = \phi(\tilde{X}_1)$ and $X_j = \tilde{X}_j$ for $j = 2, 3, \ldots, p$, where $\phi(\cdot)$ is the cumulative distribution function of the standard normal distribution. Then we can generate the response variable from the following location-scale regression model:

$$Y = X_6 + X_{12} + X_{15} + X_{20} + 0.7X_1\epsilon$$

where the random error $\epsilon \sim N(0,1)$ is independent of the covariates. It is noteworthy that in this model, the τ th quantile function is $X_6 + X_{12} + X_{15} + X_{20} + 0.7X_1\phi^{-1}(\tau)$, where $\phi^{-1}(\tau)$ denotes the τ th conditional quantile of the standard normal distribution. Hence, X_1 does not influence the center of the conditional distribution, but plays an important role when considering other conditional quantiles.

In this example, we consider sample size n = 300, covariates dimension p = 1000 and three different quantiles $\tau = 0.3, 0.5, 0.7$. We use different tuning parameter λ for different quantiles as follows.

```
> library(QICD)
> library(mvtnorm)
> set.seed(123)
> n <- 300
> p <- 1000
> Sigma=0.5^abs(outer(1:p,1:p,'-'))
> X=rmvnorm(n,mean=rep(0,p),sigma=Sigma)
> epsilon=rnorm(n)
> Y=X[,6]+X[,12]+X[,15]+X[,20]+0.7*pnorm(X[,1])*epsilon
> intercept<-1
> #include intercept
> beta1=rep(0,p+1)
> #initial value to be zero
> obj_tau3=QICD(Y,X,beta1,tau=0.3,lambda=9,funname="scad")
> obj_tau5=QICD(Y,X,beta1,tau=0.5,lambda=15,funname="scad")
```

```
> obj_tau7=QICD(Y,X,beta1,tau=0.7,lambda=8.5,funname="scad")
```

Then we can compare the coefficient estimates for different quantiles $\tau = 0.3, 0.5, 0.7$. The results, actually, are very close to the true parameter. Also, since X_1 does not influence the center of the conditional distribution, but plays an important role when considering other conditional quantiles. The coefficient for X_1 is zero for quantile $\tau = 0.5$ but none zero for other quantiles.

```
> res=data.frame(
    V1=obj_tau3$beta_final[c(1,6,12,15,20)]
+
    ,V2=obj_tau5$beta_final[c(1,6,12,15,20)]
+
    ,V3=obj_tau7$beta_final[c(1,6,12,15,20)]
+
+ )
> colnames(res)=c("tau=0.3","tau=0.5","tau=0.7")
> rownames(res)=c(1,6,12,15,20)
> print(res,digits=6)
        tau=0.3 tau=0.5
                             tau=0.7
1
  -9.76954e-05 0.000000 0.000114096
    9.42517e-01 0.973327 0.832316420
6
12 8.96578e-01 0.987515 0.881342040
   1.00279e+00 1.014146 1.044361246
15
20
    1.00318e+00 1.029070 1.013159680
```

However, the tuning parameter λ is always unknow in reality. Cross-validation and Highdimensional BIC (HBIC) Lee,Noh and Park (2014) are used for tuning parameter selection. In practice, we prefer the HBIC since Cross-validation is time-consuming when p is notably large and may result in overfitting (see Wang (Li and Tsai)). For HBIC, let $\beta_{\lambda} = (\beta_{\lambda,1}, \ldots, \beta_{\lambda,p})$ be the penalized estimator obtained with the tuning parameter λ ; and let $S \equiv \{j : \beta_{\lambda,j} \neq 0, 1 \leq j \leq p\}$ be the index set of covariates with nonzero coefficients. Define

$$\text{HBIC}(\lambda) = \log\left(\sum_{i=1}^{n} \rho_{\tau}(Y_i - \mathbf{x}_i^T \boldsymbol{\beta}_{\lambda})\right) + |\mathcal{S}_{\lambda}| \frac{\log(\log n)}{n} C_n$$

where $|S_{\lambda}|$ is the cardinality of the set S_{λ} , and C_n is a sequence of positive constants diverging to infinity as *n* increases. We select the value of λ that minimizes $\text{HBIC}(\lambda)$. In practice, we recommend to take $C_n = O(\log(p))$, which we find to work well in a variety of settings. However, the adjustment for C_n is still not easy in real application cases. A HBIC curve is displayed in

Figure 1: HBIC trends for $\tau = 0.5$

Figure 1. The best λ is around 22. Figure 2 presents the cross-validation results. This process is time-consuming, but the optimal λ seems close to the one selected by HBIC.

References

Fan, J. and Li, R. (2001). Variable Selection via Nonconcave Penalized Likelihood and its Oracle Propertie. Journal of the American Statistical Association, 96 (456), http://orfe. princeton.edu/~jqfan/papers/01/penlike.pdf

Figure 2: cross validation trends for $\tau = 0.5$

- Lee, Noh and Park (2014). Model Selection via Bayesian Information Criterion for Quantile Regression Models. *Journal of the American Statistical Association*, **109 (505)**, http://www.tandfonline.com/doi/abs/10.1080/01621459.2013.836975#.VF04ePldWeA
- Peng,B. and Wang, L. (2014). An Iterative Coordinate Descent Algorithm for High-dimensional Nonconvex Penalized Quantile Regression. *Journal of Computational and Graphical Statistics*, http://users.stat.umn.edu/~wangx346/research/QICD.pdf.
- Wang, H., Li, R., and Tsai, C. L (2007). Tuning parameter selectors for the smoothly clipped absolute deviation method. *Biometrika*, 94 (3), http://biomet.oxfordjournals.org/ content/94/3/553.short.
- Zhang,C.H.(2010). Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics, 38 (2), http://projecteuclid.org/download/pdfview_1/euclid.aos/ 1266586618.