Basics of Regression from Geometry

Georges Monette

2019-03-28

Some basic theorems

The Projection Theorem

This says that if we express Y as a sum of two orthogonal components, then we have expressed it as $\hat{Y} + e$. **Theorem:** *Projection theorem:* Let X be a matrix of full column rank and let

$$Y = Xb + e$$

where e is orthogonal to $\mathcal{L}(X)$.

Then b is the vector of estimated coefficients for the least-squares regression of Y on X, e is the residual, $||e||^2 = e'e$ \$ is the residual of the regression and the sum of squares for error, SSE, is equal to e'e. *Proof:*

$$\hat{\beta} = (X'X)^{-1}X'Y$$

$$= (X'X)^{-1}X'Xb + (X'X)^{-1}X'e$$

$$= b + (X'X)^{-1}0 \quad \text{since } e \perp \mathcal{L}(X)$$

$$= b$$

and thus $e = Y - X\hat{\beta}$. QED

Our next theorem is the "Added Variable Plot Theorem" more formally known as the Frisch-Waugh-Lovell Theorem. It took some decades to prove it but here's an easy proof.

The AVP for the regression of Y on X_1 controlling for X_2 is the regression of the residual of Y regressed on X_2 , on the residuals of the regression of X_1 regressed on X_2 .

Theorem: Consider the regression of Y on two blocks of predictors given by full column rank matrices X_1 and X_2 , where, moreover, the partitioned matrix, $[X_1X_2]$ is of full rank. Suppose

$$Y = X_1\hat{\beta}_1 + X_2\hat{\beta}_2 + e$$

Then the residual of Y regressed on X_2 regressed on the residual of X_1 on X_2 has regression coefficient $\hat{\beta}_1$ and SSE = e'e.

Proof: The residual of Y in the regression on X_2 is obtained by pre-multiplying Y by

$$Q_2 = I - P_2 = I - X_2 (X'_2 X_2)^{-1} X'_2$$

and similarly for X_1 . We obtain

$$Q_2 Y = Q_2 X_1 \hat{\beta}_1 + Q_2 X_2 \hat{\beta}_2 + Q_2 e^{-2\beta_2}$$

Now, $Q_2X_2 = 0$, so that $Q_2X_2\hat{\beta}_2 = 0$. Also, since $e \perp X_2$ it follows that $Q_2e = e$. Thus

$$Q_2 Y = Q_2 X_1 \hat{\beta}_1 + 0 + e$$

Moreover, $e'Q_2X_1\hat{\beta}_2 = e'X_1\hat{\beta}_2 = 0'\hat{\beta}_2 = 0$ so that, by the Projection Theorem, $\hat{\beta}_1$ is the regression coefficient of Q_2Y on Q_2X_1 and has SSE = e'e. QED

Finally we show that, the partial coefficient for the regression of Y on X_1 adjusting for X_2 is the same as the partial coefficient for the regression of Y on X_1 adjusting for the predictor of X_1 based on X_2 , i.e. $P_2X_1 = X_2(X'_2X_2)^{-1}X'_2X_1$. However, the SSE of this regression is larger than that of the full multiple regression which is equal to that of the AVP regression.

Theorem: Consider the regression of Y on two blocks of predictors given by full column rank matrices X_1 and X_2 , where, moreover, the partitioned matrix, $[X_1X_2]$ is of full rank. Suppose

$$Y = X_1\hat{\beta}_1 + X_2\hat{\beta}_2 + e$$

Consider, also, the regression of Y on X_1 and the predicted value of X_1 based on X_2 .

Then the regression coefficients on X_1 are the same for both regressions. The SSE for the second regression is at least as large as that of the first regression and is equal to

$$ZZZ + e'e$$

Proof: Observe that the predicted value of X_1 on X_2 is P_2X_1 where $P_2 = X_2(X'_2X_2)^{-1}X'_2$ so the resduals from the regression on P_2X_1 are obtained by premultiplying by

$$Q = I - P_2 X_1 (X_1' P_2' P_2 X_1)^{-1} X_1' P_2$$

= $I - P_2 X_1 (X_1' P_2 X_1)^{-1} X_1' P_2$

added variable plot for the second regression is obtained by premultiplying by