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Some basic theorems

The Projection Theorem

THis says that if we express Y as a sum of two orthogonal components, then we have expressed it as Ŷ + e.

Theorem: Projection theorem: Let X be a matrix of full column rank and let

Y = Xb+ e

where e is orthogonal to L(X).

Then b is the vector of estimated coefficients for the least-squares regression of Y on X, e is the residual,
||e||2 = e′e$ is the residual of the regression and the sum of squares for error, SSE, is equal to e′e.

Proof:

β̂ = (X ′X)−1X ′Y

= (X ′X)−1X ′Xb+ (X ′X)−1X ′e

= b+ (X ′X)−10 since e ⊥ L(X)
= b

and thus e = Y −Xβ̂. QED

Our next theorem is the “Added Variable Plot Theorem” more formally known as the Frisch-Waugh-Lovell
Theorem. It took some decades to prove it but here’s an easy proof.

The AVP for the regression of Y on X1 controlling for X2 is the regression of the residual of Y regressed on
$X_2, on the residuals of the regression of X1 regressed on X2.

Theorem: Consider the regression of Y on two blocks of predictors given by full column rank matrices X1
and X2, where, moreover, the partitioned matrix, [X1X2] is of full rank. Suppose

Y = X1β̂1 +X2β̂2 + e

Then the residual of Y regressed on X2 regressed on the residual of X1 on X2 has regression coefficient β̂1
and SSE = e′e.

Proof: The residual of Y in the regression on X2 is obtained by pre-multiplying Y by

Q2 = I − P2 = I −X2(X ′2X2)−1X ′2

and similarly for X1. We obtain
Q2Y = Q2X1β̂1 +Q2X2β̂2 +Q2e

Now, Q2X2 = 0, so that Q2X2β̂2 = 0. Also, since e ⊥ X2 it follows that Q2e = e. Thus

Q2Y = Q2X1β̂1 + 0 + e

Moreover, e′Q2X1β̂2 = e′X1β̂2 = 0′β̂2 = 0 so that, by the Projection Theorem, β̂1 is the regression coefficient
of Q2Y on Q2X1 and has SSE = e′e. QED
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Finally we show that, the partial coefficient for the regression of Y on X1 adjusting for X2 is the same
as the partial coefficient for the regression of Y on X1 adjusting for the predictor of X1 based on X2, i.e.
P2X1 = X2(X ′2X2)−1X ′2X1. However, the SSE of this regresion is larger than that of the full multiple
regression which is equal to that of the AVP regression.

Theorem: Consider the regression of Y on two blocks of predictors given by full column rank matrices X1
and X2, where, moreover, the partitioned matrix, [X1X2] is of full rank. Suppose

Y = X1β̂1 +X2β̂2 + e

Consider, also, the regression of Y on X1 and the predicted value of X1 based on X2.

Then the regression coefficients on X1 are the same for both regressions. The SSE for the second regression
is at least as large as that of the first regression and is equal to

ZZZ + e′e

.

Proof: Observe that the predicted value of X1 on X2 is P2X1 where P2 = X2(X ′2X2)−1X ′2 so the resduals
from the regression on P2X1 are obtained by premultiplying by

Q = I − P2X1(X ′1P ′2P2X1)−1X ′1P2

= I − P2X1(X ′1P2X1)−1X ′1P2

added variable plot for the second regression is obtained by premultiplying by . . . .
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