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1 Introduction

This vignette is a brief introduction to plume, a package that illustrates the
basics of atmospheric dispersion modeling in R. The package itself is an example
of a tool for reproducible environmental modeling research, complete with test
cases and documentation (including this document).

Throughout this vignette we will make use of the excellent ggplot2 pack-
age created by Hadley Wickham. For more information on creating plots with
ggplot2, type help(package='ggplot2') at the R prompt. We will also work
toward integration with the sp library, a foundational package for anyone work-
ing with spatial data in R.

2 Steady-State Gaussian Dispersion

2.1 Modeling a Point Source

Assuming a source of emissions with constant emission rate Q, and a steady
wind field with speed u, the concentration C at any location (x, y, z) downwind
can be conceptualized as the product of three terms.
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The orientation of the wind field is, by definition, along the positive x-axis.
From the first term we can see that C is directly proportional to Q, and inversely
proportional to u. Thus, the equation is ill-defined for low wind speeds (as u
goes to 0, C goes to infinity). Q is given in grams per second (g/s), and H in
meters (m) above ground level.

The second term captures the crosswind diffusivity, and the third term cap-
tures the vertical diffusivity. Both σy and σz are curves parameterized by x.
At any fixed distance x along the wind vector, the cross-section of the plume
is a continuous two-dimensional Gaussian distribution described by these two
curves.

In this very basic example, we imagine the ground to be like a mirror: per-
fectly level, frictionless, and flat. However, rather than absorbing the plume
aerosol, the ground will “reflect” it back toward the sky. The sky, in contrast, is
an infinite sink; there is no inversion layer to reflect the plume back down.

The difference between the height of the emission source—which might be
something like an incinerator stack—and the receptor height is expressed by
(z −H). The curious (z +H) term actually captures the plume’s reflection. It
can be imagined as the contribution from an identical emissions source which is
located at −H meters; that is, H meters below the ground plane.

A rule of thumb is that the wind must be blowing at least 1.0 meters per
second (m/s) for our model to be sensible. Under these conditions, the transport
of the plume is dominated by advection, and diffusion along the wind vector is
negligible. Diffusion in the crosswind and vertical directions, however, gives the
plume its characteristic shape. The diffusivity field σ describes the lateral (σy)
and vertical (σz) diffusivity at distance x along the wind vector.

2.2 Parameterizing the Plume

We use the GaussianPlume function to construct a particular plume fitting the
general form of Eqn (1):

> require(plume)

> Q <- 50.0 # emission rate, g/s

> H <- 10.0 # source height, m

> u <- 2.0 # wind speed, m/s

> plume <- GaussianPlume(Q, H, u, sigma=PasquillGifford('D'))

GaussianPlume is a factory function: a function that returns another func-
tion. The object plume, to which we assign the result, is now an instance of a
new function. To inspect the function body, just type the following:

> show(plume)

In the code, you can see there are references to sigma as well as Q, u, and
H, although none are passed as arguments. The trick here is that we have taken
advantage of R’s lexical scoping. When the plume function was constructed by
GaussianPlume, all of these variables were in scope. They have therefore been
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“captured”within the scope of this particular function instance, and we can refer
to them there.

PasquillGifford is also a factory function. It takes a single parameter,
stability, which is the Pasquill stability class corresponding to prevailing me-
teorological conditions. This in turn parameterizes the curves σy and σz, which
are obtained when the function returned by PasquillGifford is invoked.1 Un-
derlying these curves are the same experimentally derived σ parameters used in
the U.S. EPA’s Industrial Source Control (ISC) family of models.

Any sigma function may be supplied as an argument to GaussianPlume,
as long as it accepts a numeric vector x and returns a list with numeric y
and z components. You might experiment by using PasquillGifford('B') or
PasquillGifford('E') instead of PasquillGifford('D').

2.3 Predicting Concentrations at Receptors

Having defined our plume, the next thing to do is specify the locations at which
we would like to compute dispersed concentrations. This is our receptor grid.

Here, we construct a regular Cartesian grid with 20-meter spacing. We set
the receptor height z to 1.8 meters, corresponding to the height of an “average”
adult. Our coordinate frame is in meters; all locations are relative to the emis-
sion source, which is at (0, 0). The positive x-axis corresponds to the direction
the wind is blowing.

> resolution <- 20

> locations <- expand.grid(

x = seq(20, 1500, by=resolution),

y = seq(-500, 500, by=resolution),

z = 1.8)

We use the function plume, created earlier with a call to GaussianPlume, to
compute the predicted concentration at each location of interest. Because the
concentration is computed independently for each receptor, the time is essen-
tially linear in the number of locations:

> system.time(gm3 <- plume(locations))

user system elapsed

0.022 0.001 0.023

plume(locations) returns a vector, which we re-bind to to the receptor
locations with a call to data.frame. At the same time we multiply by 1× 103,
converting the units from g/m3 to mg/m3.

> cells <- data.frame(locations, mgm3 = gm3 * 1e3)

1For a diagram of curves corresponding to different Pasquill classes, see the Appendix.
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2.4 Plotting Results

A useful visualization is obtained by plotting the concentrations in the form
of a heat map, where the intensity of the color corresponds to the predicted
concentration. This is a “view from above” the predicted dispersion field.

> require(ggplot2)

> p <- ggplot(subset(cells, mgm3 > 0.1), aes(x, y)) +

geom_tile(aes(alpha=mgm3), fill='red') +

scale_alpha(expression(mg/m^3), range=c(0, 1))

> show(p + xlim(c(-1500, 1500)) + ylim(c(-1000, 1000)) + coord_equal())
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Plotting is sped up substantially by dropping all of the cells with a negligible
concentration (less than 0.1 mg/m3).

A Pasquill-Gifford Curves

This code demonstrates how to construct the data.frame of values used to
generate the following plots of σy and σz:

> curves <- lapply(LETTERS[1:6], PasquillGifford)

> names(curves) <- LETTERS[1:6]

> x <- 10 ^ seq(0, 5, by=0.1)

> values <- ldply(curves, function(sigma) data.frame(sigma(x)))

> values <- rename(values, c(.id='Pasquill'))
> values$x <- x

To see the code used to generate the plots themselves, take a look at inst/doc/plume.Rnw
in the plume package source!

4



10−1

100

101

102

103

104

100 101 102 103 104 105

downwind distance (m)

σ y

Pasquill

A

B

C

D

E

F

5



10−1

100

101

102

103

100 101 102 103 104 105

downwind distance (m)

σ z

Pasquill

A

B

C

D

E

F

6


