Introducing the DoubleRobGam library

Tlaria Prosdocimi

January 26, 2015

This document discusses the use of the DoubleGam and DoubleRobGamfunctions.
These functions used to be available at http://wis.kuleuven.be/stat/codes.html.
The background information on the two functions can be found in

Prosdocimi, I. (2010). Smooth and robust estimation of mean and dispersion
functions in regression models. PhD thesis, KULeuven, available at
https://lirias.kuleuven.be/handle/123456789/280610

and this document is based on Chapter 6 of the thesis. The thesis itself was
mostly based on the following papers:

Gijbels, I. and Prosdocimi, I. (2012). Flexible Mean and Dispersion Function
Estimation in Extended Generalized Additive Models, Communications in
Statistics - Theory and Methods, 41, DOI: 10.1080/03610926.2012.654881

Croux, C., Gijbels, I. and Prosdocimi, I. (2012). Robust Estimation of Mean
and Dispersion Functions in Extended Generalized Additive Models. Bio-
metrics, 268, 31-44. doi: 10.1111/j.1541-0420.2011.01630.x.

Gijbels I. and Prosdocimi I. (2011). Smooth estimation of mean and disper-
sion function in extended Generalized Additive Models with application
to Italian Induced Abortion data. Journal of Applied Statistics. 38. DOI:
10.1080/02664763.2010.550039

Gijbels, I., Prosdocimi, I. and Claeskens, G. (2010). Nonparametric estimation
of mean and dispersion functions in extended Generalized Linear Models.
Test. DOI:10.1007/s11749-010-0187-1

In the first part of this document we present the function used to fit models
for the mean and the dispersion functions presented in Gijbels and Prosdocimi
(2011): the DoubleGam function. Robust models for mean and dispersion func-
tions as presented in Croux et al. (2012) can be obtained via the DoubleRobGam
function which is discussed in the second part of this document.

The thesis and the papers mentioned above discuss in detail how Double
Robust Generlised Additive Models are placed within the Generalised Addi-
tive Models and the robust modelling frameworks. Readers non familiar with
Generalised Additive Models are referred to

Wood, S. W. (2006). Generalized Additive Models: An Introduction with R,
CRC Press.
while basic background information for robust methods can be found in:
Heritier, S., E. Cantoni, S. Copt and M.-P. Victoria-Feser (2009). Robust
Methods in Biostatistics. Wiley, Series in Probability and Statistics

1 The DoubleGam function

The DoubleGam function allows the user to obtain an estimate for both the mean
and the dispersion function, basically implementing the methods presented in
Gijbels and Prosdocimi (2010) and Gijbels and Prosdocimi (2011).

The DoubleGam function can fit semi-parametric models in which some co-
variates enter the model parametrically and others flexibly (i.e. nonparametri-
cally). We use the Ragweed data from the library SemiPar to present how to
use the DoubleGam function. The minimal requested argument to be specified in
the function is the mean regression model (formulaM) . If only this is specified a
GAM model for the mean function will be estimated. Below we fit a parametric
quadratic model for the mean of the Ragweed data:

library(SemiPar) ;data(ragweed)
ragweed<-ragweed [ragweed$year==1991,]
ragweed<-ragweed [order (ragweed$day.in.seas),]

ragla<-DoubleGam(formulaM=ragweed ~ day.in.seas+I(day.in.seas”2),
data=ragweed,family="poisson",selection="none")

The formulaM argument works like the classical formula for a regression
model. The selection argument is used to define which criterion we wish to
use to select the smoothing parameter value and can take values GCV, AIC and
none. The default value is GCV, so when we only use parametric functions in
the model we should change this to none, since no smoothing parameter needs
to be selected. The type of distribution used in order to fit the data is specified
via the family argument, as in the standard glm function. At the moment the
DoubleGam function can fit models belonging to the poisson, the binomial
and the gaussian families, the last one being the default value.

To have a flexible fit rather than a parametric shape, the bsp is used in
the formulaM argument. bspbuilds the necessary B-splines base matrix and the
appropriate penalty matrix, with a coding similar to the one proposed by Eilers
and Marx (1996).

raglb <- DoubleGam(ragweed ~ bsp(day.in.seas),
data = ragweed, family="poisson")

The fitted functions can be plotted with the following command (the figure
obtained is displayed in Figure 1)

par (mfrow=c(1,1), bty = "1", lwd=2)

plot(ragweed$day.in.seas, ragweed$ragweed ,pch=19, col=8)

lines(ragweed$day.in.seas, ragla$fitted.values, lty=2, col=4)

lines(ragweed$day.in.seas, raglb$fitted.values)

legend("topright", col=c(4,1), 1ty = c(2,1), bty = "n",
legend = c("quadratic fit", "non-parametric fit"))

- - guadratic fit
—— non-parametric fit

o
S 4
[$2]

e}

()

9]

E

(@] o

<

a o

©

()

()

=

(o))

@

g
o
S 4
—
o -

ragweed$day.in.seas

Figure 1: The Ragweed data: mean and dispersion components.

The bsp function accepts different type of arguments

args (bsp)

function (x, nknots = 15, p = 3, center = TRUE, sm.p = 1, order
NULL

The arguments nknots and p affect the building of the B-spline bases con-
trolling the number of internal knots and the degree of the base. The order
and sm.p arguments instead deal with characteristics of the penalization: the
first defines the order m of the difference operator used in the penalization,
while with sm.p we define the value of the smoothing parameter. If no optimal
selection of the smoothing parameters is pursued, this value will be used in the
fitting procedure. The center argument which indicates whether the B-splines
base should be centered or not needs to be handled with care. The centering
of the B-splines is done in order to avoid identifiability issues. In the case of a
univariate covariate though, we do not need to worry about identifiability, and
DoubleGam automatically sets center=FALSE. When more than one covariate
is present in the model though, we recommend to not change the default value
of this argument.

In order to fit both the mean and the dispersion function the formulaG
argument also needs to be specified. The argument also follows the usual R
formula fashion, although no dependent variable needs to be specified. For the
Ragweed data we would have:

rag2<-DoubleGam(ragweed~bsp(day.in.seas),
formulaG= “bsp(day.in.seas,nknots=14),
data=ragweed, family="poisson")

Note that when formulaG="1 is specified the dispersion is estimated as a
constant value rather than as a function of the covariates. This is the default
behaviour if no formula is specified for formulaG .

When estimating both the mean and the dispersion function we obtain as
output two list objects: fitM and fitG, each one of them containing infor-
mation on the fit of either the mean function u(x4) or the dispersion function
v(xq). Along with these two lists, the output also contains some information
on the convergence of the whole algorithm. The £itM and £itG objects contain
the same type of objects for the mean and the dispersion estimation.

names (rag2)

[1] "fitM" "fitG" "convVec" "converged" "iter"
[7] "data"

names (rag2$£itM)

= 2)

"relE"

[1] "coefficients"
[4] "dims"

[7] "deviance"

[10] "y"

[13] "GCV"

[16] "df"

[19] "formula"
names (rag2$£fitG)

[1] "coefficients"
[4] "dims"

[7] "deviance"

[10] "yd"

[13] "GCV"

[16] "df"

[19] "formula"

"fitted.values"
"family"
"residuals"
"converged"
"AIC"

"vecdf"

"dimsP"

"fitted.values"
"family"
"residuals"
"converged"
"AIC"

"vecdf"

"dimsP"

"desMat"
"linear.predictors"
"s.resid"

"SIIl . pll

Ilytll

"cov.coef"

"desMat"
"linear.predictors"
"s.resid"

"sm.p"

Ilytll

"cov.coef"

Most of these objects are the ones we would expect to find in a regression

model output in R and can be used in the usual way. It is worth to mention
that s.resid contains the standardized Pearson residuals and that deviance
contains the standardized deviance residuals. sm.p gives information on the
smoothing parameters used in the fitting, while df and vecdf give information
about the total and the componentwise number of equivalent degrees freedom.

To plot the estimated mean and dispersion function simply type

par (mfrow=c(2,1) ,mai = ¢(0.3,0.3,0.3,0.3))
plot(ragweed$day.in.seas,rag2$fitM$fitted, type= "1")

add the result obtained i1f no disperstion is estimated
lines(ragweed$day.in.seas,raglb$fitted,lty=2, type= "1", col=4)
plot(ragweed$day.in.seas,rag2$fitGefitted, type= "1")

10U paviv;
| |

1uu
|

4V}

n an AN en on

Figure 2: The mean and dispersion function estimate .

DoblelGam outputs belong to the S3 gamMD class, for which plot summary
and print functions exist. Additive components of the estimated mean and
dispersion functions can be plotted simply using

plot(rag2)

o —

~ 4

- 4
; —

=

|

o |

|

day.in.seas

< —

N
g ©°-
T «
g '

© |

|

| | | | |
0 20 40 60 80
day.in.seas
Figure 3: The mean and dispersion functions estimate.
The summary and print function are also available for the gamMD class.

class(rag2)

[1] "gamMD"
summary (rag2)

algorithm has converged in 3 iterations

##

#Hit mean estimation:

for x1 lambdaM is 3.011 corresponding to 6.322 degrees of freedom
#Hit dispersion estimation:

for x1 lambdaG is 6.643 corresponding to 3.977 degrees of freedom

rag?2

algorithm has converged in 3 iterations
#i#

lambdaM is 3.011

the e.d.f. for the mean is 7.316

##

lambdaG is 6.643

the e.d.f. for the dispersion is 4.977

The print function prints out information similar to the ones given by
summary. The plot function plots the appropriately transformed and centered
data with each of the separate mean and the dispersion components. By default
the mean components are plotted above and the dispersion ones in the lower
part of the graphical device (see Figure 3). If the one argument is set to FALSE
two graphical devices will be displayed: one for the mean components and one
for the dispersion ones.

To further illustrate the use of DoubleGam we use the US temperature data
from the SemiPar library. To estimate a fit for both the mean and the dispersion
of the average minimum January temperature as functions of the latitude and
the longitude we use

library(SemiPar) ;data(ustemp)
templ<-DoubleGam(formulaM=min.temp~bsp(latitude,p=2,nknots=8,sm.p=0.006)+
bsp(longitude,p=2,nknots=7,sm.p=0.034),
formulaG="bsp(latitude,p=2,nknots=6,sm.p=1400)+
bsp(longitude,p=2,nknots=6,sm.p=17000) ,
selection="GCV",trace=TRUE,data=ustemp)

The outer iteration begins

iteration 1

the chosen smoothing parameters are

0.003040804 0.05115781 for the mean - 14.05037 degrees of freedom
13500 26.31207 for the dispersion - 3.13126 degrees of freedom

the relative change in the estimates is 0.01375278 0.4417377

#i#

iteration 2

the chosen smoothing parameters are

0.002803753 0.06211346 for the mean - 14.42481 degrees of freedom
13500 89.02277 for the dispersion - 3.001717 degrees of freedom

the relative change in the estimates is 0.009648586 0.300048

#i#

iteration 3

the chosen smoothing parameters are

0.003402404 0.04874993 for the mean - 14.69262 degrees of freedom
13500 13500 for the dispersion - 3.001717 degrees of freedom

the relative change in the estimates is 0.006038883 0.1257331

#i#

iteration 4

the chosen smoothing parameters are

0.003982976 0.03998633 for the mean - 14.81758 degrees of freedom
13500 13500 for the dispersion - 3.001717 degrees of freedom

the relative change in the estimates is 0.002982086 0.04005848

##

iteration 5

the chosen smoothing parameters are

0.004331957 0.0367228 for the mean - 14.87032 degrees of freedom

13500 13500 for the dispersion - 3.001717 degrees of freedom

the relative change in the estimates is 0.001295255 0.01132046

##

iteration 6

the chosen smoothing parameters are

0.004495987 0.03542306 for the mean - 14.89262 degrees of freedom
13500 13500 for the dispersion - 3.001717 degrees of freedom

the relative change in the estimates is 0.0005881139 0.004248026

##

A control option can be used in order to keep some key points of the esti-
mation procedure under control via an auxiliary function DoubleGamControl.
We can for example force the function to perform a limited number of inner
iterations for the estimation of either the ey, or the o, and outer iterations for
the global two steps algorithm. This can be done by setting respectively the
maxitM, maxitG and maxitOUT options to the desired number.

templ<-DoubleGam(formulaM=min.temp~bsp(latitude,nknots=9,p=2)+
bsp(longitude,nknots=9,p=2,sm.p=0.2),
formulaG="bsp(latitude,p=2,nknots=8)+
bsp(longitude,p=2,nknots=8,sm.p=0.54),
data=ustemp,
control=DoubleGamControl (maxitM=25,maxitG=25,maxit0UT=5))

Warning in DoubleGam(formulaM = min.temp ~ bsp(latitude, nknots
=9, p=2) + : no convergence for the general algorithm

Also, we can change the level of accuracy requested to obtain convergence
both for the inner and the outer iterations by changing the tol and the acc

option. See for example how by changing the acc option in the estimation
above we do not get a warning about non convergence of the algorithm after 5
iterations:

templ<-DoubleGam(formulaM=min.temp~bsp(latitude,nknots=9,p=2)+
bsp(longitude,nknots=9,p=2,sm.p=0.2),
formulaG="bsp(latitude,p=2,nknots=8)+
bsp(longitude,p=2,nknots=8,sm.p=0.54),
data=ustemp,
control=DoubleGamControl (maxitM=25,maxitG=25,maxit0UT=5,acc=0.07))

Finally, we can force the value automatically chosen for the smoothing pa-
rameters to not exceed or to not go lower than some given limits via the lambdaM
and lambdaG options:

templ <- DoubleGam(formulaM=min.temp~bsp(latitude,nknots=9,p=2)+
bsp(longitude,nknots=9,p=2,sm.p=0.2),
formulaG="bsp(latitude,p=2,nknots=8)+
bsp(longitude,p=2,nknots=8,sm.p=0.54),
data=ustemp,
control=DoubleGamControl (1ambdaM=c (.05,200),
lambdaG=c(.3,14) ,maxit0UT=4))

Warning in DoubleGam(formulaM = min.temp ~ bsp(latitude, nknots
=9, p=2) + : no convergence for the general algorithm

Changing one or more of the parameters in the DoubleGamControl function
can affect quite significantly the final result. Even if for particular data analysis
it can be necessary to change some of the default values to avoid convergence
issues or to make the procedure faster, the control option should be used with
extra care.

The default values for the DoubleGamControl function are:

args (DoubleGamControl)

function (maxitM = 30, maxitG = 30, tol = 10°-5, acc = 5 * 10°-3,

maxitOUT = 55, lambdaM = c(le-04, 35500), lambdaG = c(le-04,
#i# 13500))
NULL

2 The DoubleRobGam function

The DoubleRobGam function builds on the DoubleGam function and allows the
user to model the mean and eventually the dispersion function as a nonpara-
metric and robust function of one or more covariates, thus implementing the

10

methods presented in Croux et al. (2013). In order to modify DoubleGam to
allow also for robust modelling we relied on the functionalities implemented
in robustbase, the standard R library for robust methods. In particular we
used some of the code of the glmrob function which implements the parametric
methods presented by Cantoni and Ronchetti (2001a).

The usage and the possible options of DoubleRobGam are very similar to
the ones that were already presented for the DoubleGam function, most of the
differences lie in the possibility of specifying how robust should the estimate
be via the choice of the tuning constant ¢ in the Huber function and in the
choice of whether the smoothing parameter selection should be performed via
a robust criterion. Possible values for the selection option in fact are, beside
the standard ‘none’ ‘GCV’ and ‘AIC’; also ‘RGCV’ and ‘RAIC’ (see Croux et
al. (2013)) with ‘RGCV’ as a default choice.

Robust and smooth estimates for the mean and the dispersion function for
the US temperature data can be obtained via:

tempRobl<-DoubleRobGam(min.temp~bsp(latitude,nknots=9,p=2)+
bsp(longitude,nknots=9,p=2),
formulaG="bsp(latitude,p=2,nknots=8)+
bsp(longitude,p=2,nknots=8) ,data=ustemp)

Since the class of models fitted via DoubleRobGam is also ‘gamMD’, plotprint
and summary can be used.

summary (tempRob1)

algorithm has converged in 8 iterations

##

mean estimation:

for x1 lambdaM is 0.68 corresponding to 3.876 degrees of freedom
for x2 lambdaM is 0.316 corresponding to 4.601 degrees of freedom
dispersion estimation:

for x1 lambdaG is 16.031 corresponding to 1.868 degrees of freedom
for x2 lambdaG is 16.784 corresponding to 1.917 degrees of freedom

11

plot (tempRobl)

yt

log(dev)

0 10 20 30 40
yt

-20
1

T T T T T
25 30 35

latitude

-2
log(dev)

-4
|

-6

T T T T T
25 30 35 40 45

latitude

0 10 20 30 40

-20

-4 -2

-6

70 80 90 100 110 120
longitude
~ -7
T T T T T T
70 80 90 100 110 120
longitude

Figure 4: Robust estimates of the mean and dispersion function estimates.

12

The robustness of the estimation is governed by the tuning constant ¢ of the
Huber function). (x):

Volz) = { T if |[2] < e (1)

csign(z) if x| > c.

Lower (respectively higher) values of ¢ correspond to more (respectively less)
robust methods. The default value for ¢ is 1.345, if one would like to have
estimates which are more robust to outliers, this value should be decreased
with the control option via the auxiliary function DoubleRobGamControl. This
control function has, besides the same options as DoubleGamControl, also a
tccM and a tccG option which govern the tuning constant ¢ value for respectively
the mean and the dispersion function estimation. If one wishes to fit a model
with tuning constants equal to, for example, ¢ = 1.2 and ¢ = 1.8 for respectively
the mean and the dispersion function estimation, the necessary coding would
be:

tempRob2<-DoubleRobGam(min.temp~bsp(latitude,nknots=9,p=2)
+bsp(longitude,nknots=9,p=2),
formulaG="bsp(latitude,p=2,nknots=8,sm.p=500)+
bsp(longitude,p=2,nknots=8,sm.p=500) ,data=ustemp,
control=DoubleRobGamControl (tccM=1.2,tccG=1.8))

The resulting fitted mean and dispersion components are depicted in Fig-
ure 5.

13

plot (tempRob2, ci.plot = FALSE)
o 4
<
o |
™
o
N
o
- o
>
o 4
o
Q 4
I
T T T T T
25 30 35 40 45
latitude
<«
~
o 4
>
(0]
g _
jo2)
S ¥
® |
I
T T T T T
25 30 35 40 45

latitude

Figure 5: The U.S. temperature data: robust fits of the mean and dispersion

yt

log(dev)

0 10 20 30 40

-20

70 80 90 100 110 120
longitude
T T T T T T
70 80 90 100 110 120
longitude

components as functions of the latitude and the longitude.

14

Comparing Figure 4 with Figure 5 we notice that the choice of the tuning
parameter seems to mostly affect the shape of the dispersion component for
the latitude, while the shapes of the other components stay approximately the
same. This is not always the case, and, for some data, changing the values of
the tuning constants can affect very much the final fit.

One of the options that the DoubleRobGam function took over from glmrob
is the weights.on.x option which gives the user the possibility to also use
a weight function w(-) that can correct the estimation procedure for leverage
points. The default value is weights.on.x="none" corresponding to w(-) = 1,
with which no action is taken against leverage points. Other possible options,
mutated from the robustbase package are ‘hat’, ‘robCov’ and ‘covMed’, which
all provide different types of weights functions to correct for leverage points.
We refer to help(glmrob) for a detailed explanation of these options.

15

