optimal_transport: solve the Optimal transport problem

Description Usage Arguments Value

View source: R/optimal_transport.R

Description

Optimally transport according to wasserstein cost C_ij = d(QX_i, Y_j)^2. this is the usual optimal transport problem except with an allowance of a parameter Q for an orthogonal matrix. Give two matrices of dimensions n x d and m x y respectively

Usage

1
optimal_transport(X, Y, Q = NULL, lambda = 0.1, eps = 0.01)

Arguments

X

an n x d matrix of points where each row is a point

Y

similar, except possibly a different number of points

Q

An orthogonal matrix

lambda

the parameter to penalize in sinkhorn divergence

eps

the tolerance

Value

P, the n x m matrix of assignments


jagterberg/optimalTransportInvariance documentation built on Feb. 3, 2022, 7:24 p.m.