
Using the Google Chart Tools with R:

googleVis-0.4.3 Package Vignette

Markus Gesmann∗, Diego de Castillo†

Contact: rvisualisation@gmail.com

May 25, 2013

Abstract

The googleVis package provides an interface between R and the Google

Chart Tools. The Google Chart Tools offer interactive charts which can be

embedded into web pages. The best known of these charts is probably the

Motion Chart, popularised by Hans Rosling in his TED talks.

The functions of the googleVis package allow the user to visualise data

stored in R data frames with the Google Chart Tools without uploading the

data to Google. The output of a googleVis function is html code that

contains the data and references to JavaScript functions hosted by Google.

googleVis makes use of the internal R HTTP server to display the output

locally. A modern browser with an Internet connection is required and for

some charts Flash.

∗markus.gesmann@gmail.com
†decastillo@gmail.com

1

Contents

1 Introduction 4

1.1 Motivation . 4

1.2 Google Chart Tools . 4

2 The googleVis package 7

2.1 Installation . 7

2.2 Using the googleVis package . 8

2.3 Motion Chart Example . 9

2.4 Displaying gvis objects locally . 16

2.5 Setting default behaviour of print.gvis and plot.gvis 17

2.6 Combining charts with gvisMerge 17

2.7 Setting options . 18

2.7.1 Chart Editor . 20

2.7.2 Dealing with apostrophes in column names 20

3 Embedding googleVis in web sites 21

3.1 Integrating gvis objects in existing sites 21

3.2 Using googleVis output with WordPress 22

3.3 Using googleVis output with Google Sites, Blogger, etc. 23

3.4 Embedding googleVis in web sites dynamically 24

3.4.1 Using googleVis with R.rsp 25

3.4.2 Using googleVis with RApache and brew 25

3.4.3 Using googleVis with Rook 27

3.4.4 Using googleVis with shiny 29

4 Using googleVis with knitr 31

5 Using googleVis in presentations 33

6 Beyond R 35

6.1 Registering to catch events . 35

2

7 Frequent ask questions – FAQ 36

7.1 Can I use googleVis output in PDF files? 36

7.2 Can I change the colour of the bubbles in motion charts? 36

7.3 Can I change the icons in Maps? 36

7.4 Why can’t I see motion charts when I open them from a local directory? 37

7.5 Why can’t I see motion charts on my iPad/iPhone? 37

7.6 How can I change the look and feel of the charts? 37

7.7 Is it possible to use googleVis in corporate work? 37

7.8 Bugs and issues . 37

8 Contact 38

8.1 Collaboration . 38

8.2 Citation . 38

8.3 Training and consultancy . 38

References 40

3

1 Introduction

1.1 Motivation

More and more data is becoming available, and yet stories and insights are still often
missed: we are lost in the data jungle and struggle to see the wood for the trees.

Hence, new tools are required to bring data to life, to engage with users, to enable
them to slice and dice the data, to view it from various angles and to find stories
worth telling: outliers, trends or even the obvious.

In 2006 Hans Rosling gave an inspiring talk at TED [Ros06] about social and eco-
nomic developments in the world over the past 50 years, which challenged the views
and perceptions of many listeners. Rosling had used extensive data analysis to reach
his conclusions. To visualise his talk, he and his team at Gapminder [Fou10b] had
developed animated bubble charts, aka motion charts, see Figure 1.

Rosling’s presentation popularised the idea and use of interactive charts. One year
later the software behind Gapminder was bought by Google and integrated as motion
charts into their Google Chart Tools [Inc12b], formerly known as Google Visualisa-
tion API.

In 2010 Sebastián Pérez Saaibi [Saa10] presented at the R/Rmetrics Workshop on
Computational Finance and Financial Engineering, the idea to use Google motion
charts to visualise R output with the R.rsp package [Ben12].

Inspired by those talks and the desire to use interactive data visualisation tools to
foster the dialogue between data analysts and others the authors of this vignette
started the development of the googleVis package [GdC13], [GdC11] in August
2010.

Of course there are many other alternative visualisation toolkits out there, e.g.
d3js [Bos12], Many Eyes [RtICsg10], Open Flash Chart (Flash) [GHN10], Open-
Layers (JavaScript) [Fou10c], Processing (Java) [FR10], and FLARE (ActionScript)
[Lab10].

1.2 Google Chart Tools

The Google Chart Tools [Inc12b] allow users to create interactive charts as part of
Google documents, spreadsheets and web pages. In this text we will focus on the
usage of the API as part of web pages.

The Google Public Data Explorer [Inc12d] provides a good example, demonstrating
the use of interactive charts and how they can help to analyse data. Please note,
that all of those charts are rendered by the browser.

The charting data can either be embedded into the html file or read dynamically. The
key to the Google Chart Tools is that the data is structured in a DataTable [Inc12e],

4

http://d3js.org
http://www-958.ibm.com/software/data/cognos/manyeyes/
http://teethgrinder.co.uk/open-flash-chart/
http://www.openlayers.org/
http://www.openlayers.org/
http://processing.org/
http://flare.prefuse.org/

Y-axis
Click here to select
indicators for the y-
axis.

Lin / Log scale
X- and y-axis scales can
be linear or
logarithmic. A log scale
can make it easier to
see trends.

Play / Stop
Click Play/Stop to
control the animation.
(How the graph
changes over time.)

Time
Click and drag to
change year.

Speed of
animation
Drag to change the
speed of the animation.

X-axis
Click here to select indicators for
the x-axis. You can also choose to
display time on this axis.

Chart type
Change between bubble, bar and line chart.

Colour
Click to choose
another indicator
for colour.

Select variables
Click boxes to
select specific
variables. (You can
also click the
bubbles.)

Trails
Click Trails to
follow a selected
country while the
animation plays.

Size indicator
Select the indicator
which represents
the size of the
bubble

To zoom in:
1. Put your mouse in the
chart area.
2. Hold down the left
mouse button and draw a
rectangle over the items
that you want to zoom in.
3. Release the left mouse
button.
4. In the menu that pops
up, select 'Zoom in'.

To zoom out:
Click the 'Zoom out' link
above the zoom thumbnail
in the right panel.

Settings
Change opacity of
non selected items
and further
advanced settings

Adapted from www.gapminder.org, which used
an original idea by wwww.juicygeography.co.uk

Figure 1: Overview of a Google Motion Chart. Screenshot of the output of
plot(gvisMotionChart(Fruits, idvar=’Fruit’, timevar=’Year’))

and this is where the googleVis package helps, as it transforms R data frames into
JSON [JSO06] objects, using the RJSONIO package [Lan12], as the basis for a
DataTable.

As an example we shall look at the html-code of a motion chart from Google’s
visualisation gallery [Inc12c], which generates output similar to Figure 1:

1 <html>

2 <head>

3 <script type="text/javascript"

4 src="http://www.google.com/jsapi">

5 </script>

6 <script type="text/javascript">

7 google.load('visualization', '1',

8 {'packages':['motionchart']});

9 google.setOnLoadCallback(drawChart);

10 function drawChart() {

11 var data=new google.visualization.DataTable();

12 data.addColumn('string', 'Fruit');

5

13 data.addColumn('date', 'Date');

14 data.addColumn('number', 'Sales');

15 data.addColumn('number', 'Expenses');

16 data.addColumn('string', 'Location');

17 data.addRows([

18 ['Apples',new Date(1988,0,1),1000,300,'East'],

19 ['Oranges',new Date(1988,0,1),1150,200,'West'],

20 ['Bananas',new Date(1988,0,1),300,250,'West'],

21 ['Apples',new Date(1989,6,1),1200,400,'East'],

22 ['Oranges',new Date(1989,6,1),750,150,'West'],

23 ['Bananas',new Date(1989,6,1),788,617,'West']

24]);

25 var chart=new google.visualization.MotionChart(

26 document.getElementById('chart_div'));

27 chart.draw(data, {width: 600, height:300});

28 }

29 </script>

30 </head>

31 <body>

32 <div id="chart_div"

33 style="width:600px; height:300px;">

34 </div>

35 </body>

36 </html>

The code and data are processed and rendered by the browser and is not submitted
to any server1.

You will notice that the above html code has five generic parts2:

• references to Google’s AJAX (l. 4) and Visualisation API (ll. 7 – 8),

• data to visualise as a DataTable (ll. 11 – 24),

• an instance call to create the chart (ll. 25 – 26),

• a method call to draw the chart including options, shown here as width and
height (l. 27),

• an HTML <div> element to add the chart to the page (ll. 32 – 34).

These principles hold true for most of the interactive charts of the Google Chart
Tools, see the examples in Figure 2.

However, before you use the API you should read the Google Terms of Service [Inc12a].

1https://google-developers.appspot.com/chart/interactive/docs/gallery/

motionchart.html#Data_Policy
2For more details see https://google-developers.appspot.com/chart/interactive/docs/

index

6

https://developers.google.com/terms/
https://google-developers.appspot.com/chart/interactive/docs/gallery/motionchart.html#Data_Policy
https://google-developers.appspot.com/chart/interactive/docs/gallery/motionchart.html#Data_Policy
https://google-developers.appspot.com/chart/interactive/docs/index
https://google-developers.appspot.com/chart/interactive/docs/index

2 The googleVis package

The googleVis package provides an interface between R and the Google Chart
Tools. The functions of the package allow the user to visualise data stored in R
data frames with the Google Chart Tools.

Version (0.4.3) of the package provides interfaces to Motion Charts, Annotated
Time Lines, Maps, Geo Maps, Geo Charts, Intensity Maps, Tables, Gauges, Tree
Maps, further Line, Bar, Bubble, Column, Area, Stepped Area, Combo, Scatter,
Candlestick, Pie and Org Charts; see Figure 2 for some examples. All available
charts types are listed on the project site3.

The output of a googleVis function is html code that contains the data and
references to JavaScript functions hosted by Google. A browser with an Internet
connection is required to view the output, and for Motion Charts, Geo Maps and
Annotated Time Lines also Flash.

2.1 Installation

You can install googleVis in the usual way from CRAN, e.g.:

R> install.packages('googleVis')

The installation was successful if the command library(googleVis) gives you
the following message:

R> library(googleVis)

Welcome to googleVis version 0.4.3

Please read the Google API Terms of Use

before you use the package:

https://developers.google.com/terms/

Type ?googleVis to access the overall documentation and

vignette('googleVis') for the package vignette.

You can execute a demo of the package via: demo(googleVis)

More information is available on the googleVis project web-site:

http://code.google.com/p/google-motion-charts-with-r/

Contact: <rvisualisation@gmail.com>

To suppress the this message use:

suppressPackageStartupMessages(library(googleVis))

3http://code.google.com/p/google-motion-charts-with-r/wiki/GadgetExamples

7

http://code.google.com/p/google-motion-charts-with-r/wiki/GadgetExamples

Figure 2: Screenshot of some of the outputs of demo(googleVis). Clock-
wise from top left: gvisMotionChart, gvisAnnotatedTimeLine, gvisGeoMap,
gvisTreeMap, gvisTable, and gvisMap.

2.2 Using the googleVis package

The individual functions of the googleVis package are documented in detail in the
help pages. Here we will cover only the principles of the package.

As an example we will show how to generate a motion chart as displayed in Figure 1.
It works similarly for the other APIs. Further examples are covered in the demos4

of the googleVis package.

The design of the visualisation functions is fairly generic. The name of the visuali-
sation function is ’gvis’ + ChartType. So for the Motion Chart we have:

4See demo(package="googleVis") for a list of the available demos.

8

gvisMotionChart(data, idvar='id', timevar='date',

options=list(), chartid)

Here data is the input data.frame and idvar and timevar specify the column
names of the id variable and time variable for the plot, while display options are set
in an optional list, which we discuss in more detail on page 18. The options and
data requirements follow those of the Google Chart Tools and are documented in
the help pages, see

R> help('gvisMotionChart')

Figure 3: Schematic struc-
ture of a gvis list object.

The argument chartid allows the user to set a chart
id of the output chart manually. If the argument is
missing a random id using tempfile(pattern='')

will be generated. Unique chart ids are required to
place more than one chart on a web page.

The output of a googleVis function is a list of
lists (a nested list) containing information about the
chart type, chart id and the html code in a sub-list
with header, chart, caption and footer, see Figure 3.

The idea behind this concept is that users can get
a complete web page, while at the same time of-
fer a facility to extract specific parts, such as the
chart itself. This is particularly helpful if the pack-
age functions are used in solutions where the user
wants to feed the visualisation output into other
sites, or would like to embed them into rsp-pages
(see page 25), use RApache (see page 25) or Google
Gadgets.

The output of a googleVis function will be of class
’gvis’ and ’list’. Generic print (print.gvis)
and plot (plot.gvis) functions exist to ease the
handling of such objects.

To illustrate the concept we shall create a motion chart using the Fruits data set.

2.3 Motion Chart Example

Following the documentation of the Google Motion Chart API we need a data
set which has at least four columns: one identifying the variable we would like to
plot, one time variable and at least two numerical variables, further numerical and
character columns are allowed.

As an example we use the Fruits data set:

9

R> data(Fruits)

R> Fruits

Fruit Year Location Sales Expenses Profit Date

1 Apples 2008 West 98 78 20 2008-12-31

2 Apples 2009 West 111 79 32 2009-12-31

3 Apples 2010 West 89 76 13 2010-12-31

4 Oranges 2008 East 96 81 15 2008-12-31

5 Bananas 2008 East 85 76 9 2008-12-31

6 Oranges 2009 East 93 80 13 2009-12-31

7 Bananas 2009 East 94 78 16 2009-12-31

8 Oranges 2010 East 98 91 7 2010-12-31

9 Bananas 2010 East 81 71 10 2010-12-31

Here we will use the columns ’Fruit’ and ’Year’ as id and time variable respec-
tively. However we could have used ’Date’ instead of ’Year’ as well.

R> M <- gvisMotionChart(Fruits, idvar="Fruit", timevar="Year")

The structural output of gvisMotionChart is a list of lists as described above

R> str(M)

List of 3

$ type : chr "MotionChart"

$ chartid: chr "MotionChartIDd434e9c6fb2"

$ html :List of 4

..$ header : chr "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0

..$ chart : Named chr [1:7] "<!-- MotionChart generated in R 3.

.. ..- attr(*, "names")= chr [1:7] "jsHeader" "jsData" "jsDrawCh

..$ caption: chr "<div>Data: Fruits • Chart ID: <a h

..$ footer : chr "\n<!-- htmlFooter -->\n \nR version 3.0.

- attr(*, "class")= chr [1:2] "gvis" "list"

The first two items of the list contain information about the chart type used and
the individual chart id:

R> M$type

[1] "MotionChart"

R> M$chartid

[1] "MotionChartIDd434e9c6fb2"

10

The html output is a list with header, chart, caption and footer. This allows the
user to extract only certain parts of the page, or to create a complete html page.

The header part of the html page has only basic html and formatting tags:

R> print(M, tag='header')

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>MotionChartIDd434e9c6fb2</title>

<meta http-equiv="content-type" content="text/html;charset=utf-8" />

<style type="text/css">

body {

color: #444444;

font-family: Arial,Helvetica,sans-serif;

font-size: 75%;

}

a {

color: #4D87C7;

text-decoration: none;

}

</style>

</head>

<body>

Here we used the print statement with the tag ’header’ instead of M$html$header
to achieve a formatted screen output. This is the same output as cat(M$html$chart).

The actual Google visualisation code is stored with the data as a named character
vector in the chart item of the html list. The chart is made up of several JavaScript
and HTML statements. Please notice that the JavaScript functions are uniquely
named with the information of the chart id. This concept allows the user get all
the chart code directly or only specific parts; see the examples in the help page of
print.gvis for more details.

R> names(M$html$chart)

[1] "jsHeader" "jsData" "jsDrawChart" "jsDisplayChart"

[5] "jsFooter" "jsChart" "divChart"

The complete chart can be displayed via:

R> print(M, tag='chart') ## or cat(M$html$chart)

11

<!-- MotionChart generated in R 3.0.1 by googleVis 0.4.3 package -->

<!-- Sat May 25 13:14:25 2013 -->

<!-- jsHeader -->

<script type="text/javascript">

// jsData

function gvisDataMotionChartIDd434e9c6fb2 () {

var data = new google.visualization.DataTable();

var datajson =

[

[

"Apples",

2008,

"West",

98,

78,

20,

"2008-12-31"

],

[

"Apples",

2009,

"West",

111,

79,

32,

"2009-12-31"

],

[

"Apples",

2010,

"West",

89,

76,

13,

"2010-12-31"

],

[

"Oranges",

2008,

"East",

96,

81,

15,

12

"2008-12-31"

],

[

"Bananas",

2008,

"East",

85,

76,

9,

"2008-12-31"

],

[

"Oranges",

2009,

"East",

93,

80,

13,

"2009-12-31"

],

[

"Bananas",

2009,

"East",

94,

78,

16,

"2009-12-31"

],

[

"Oranges",

2010,

"East",

98,

91,

7,

"2010-12-31"

],

[

"Bananas",

2010,

"East",

81,

71,

10,

"2010-12-31"

13

]

];

data.addColumn('string','Fruit');

data.addColumn('number','Year');

data.addColumn('string','Location');

data.addColumn('number','Sales');

data.addColumn('number','Expenses');

data.addColumn('number','Profit');

data.addColumn('string','Date');

data.addRows(datajson);

return(data);

}

// jsDrawChart

function drawChartMotionChartIDd434e9c6fb2() {

var data = gvisDataMotionChartIDd434e9c6fb2();

var options = {};

options["width"] = 600;

options["height"] = 500;

var chart = new google.visualization.MotionChart(

document.getElementById('MotionChartIDd434e9c6fb2')

);

chart.draw(data,options);

}

// jsDisplayChart

(function() {

var pkgs = window.__gvisPackages = window.__gvisPackages || [];

var callbacks = window.__gvisCallbacks = window.__gvisCallbacks || [];

var chartid = "motionchart";

// Manually see if chartid is in pkgs (not all browsers support Array.indexOf)

var i, newPackage = true;

for (i = 0; newPackage && i < pkgs.length; i++) {

if (pkgs[i] === chartid)

newPackage = false;

}

if (newPackage)

pkgs.push(chartid);

// Add the drawChart function to the global list of callbacks

callbacks.push(drawChartMotionChartIDd434e9c6fb2);

14

})();

function displayChartMotionChartIDd434e9c6fb2() {

var pkgs = window.__gvisPackages = window.__gvisPackages || [];

var callbacks = window.__gvisCallbacks = window.__gvisCallbacks || [];

window.clearTimeout(window.__gvisLoad);

// The timeout is set to 100 because otherwise the container div we are

// targeting might not be part of the document yet

window.__gvisLoad = setTimeout(function() {

var pkgCount = pkgs.length;

google.load("visualization", "1", { packages:pkgs, callback: function() {

if (pkgCount != pkgs.length) {

// Race condition where another setTimeout call snuck in after us; if

// that call added a package, we must not shift its callback

return;

}

while (callbacks.length > 0)

callbacks.shift()();

} });

}, 100);

}

// jsFooter

</script>

<!-- jsChart -->

<script type="text/javascript" src="https://www.google.com/jsapi?callback=displayChartMotion

<!-- divChart -->

<div id="MotionChartIDd434e9c6fb2"

style="width: 600px; height: 500px;">

</div>

Similarly you can also access specific components of the chart, e.g. (output trun-
cated)

R> cat(M$html$chart['jsChart']) # or print(M, 'jsChart')

<!-- jsChart -->

<script type="text/javascript" src="https://www.google.com/jsapi?c

A basic chart caption and html footer are the final items of the html list (output
truncated):

R> print(M, tag='caption')

15

<div>Data: Fruits • Chart ID: <a href="Chart_MotionCha

R> print(M, tag='footer')

<!-- htmlFooter -->

R version 3.0.1 (2013-05-16) • <a href="http://code.google.c

• Google Term

</div>

</body>

</html>

2.4 Displaying gvis objects locally

To display the page locally, type:

R> plot(M) # returns invisibly the file name

The plot method for gvis-objects creates html files in a temporary folder using the
type and chart id information of the object and it will display the output using the
R HTTP help web server locally, usually under http://127.0.0.1.

Note that the chart caption provides a link to the chart code via the chart id for
copy and paste.

The R command tempdir() will show you the path of the per-session temporary
directory, in which the files were written. You can write the chart into a local html
file via the print command with the file argument, e.g.

R> print(M, file="myGoogleVisChart.html")

Please note that Flash charts5 may not work when loaded as a local file due to
security settings, and therefore require to be displayed via a web server. However,
you can overcame this issue by changing your Flash security settings. Tony Breyal
posted the following solution on stackoverflow.com:

1. Go to http://www.macromedia.com/support/documentation/en/flashplayer/
help/settings_manager04.html

2. Click on the dropbox which says ’Edit location’ and choose ’add location’

3. Click ’browse for folder’

4. Choose the folder in which you saved your html file

5Currently the following charts require Flash: motion chart, geo map and annotated time line

16

http://stackoverflow.com/questions/8009825/cannot-view-gvismotionchart-from-printed-html-file
http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager04.html
http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager04.html

5. Click OK

Now open your googleVis html file and it should display successfully.

Alternatively use the function plot.gvis explicitly, e.g. suppose your html file
is stored in /Users/JoeBloggs/myGoogleVisChart.html. Using the plot.gvis
the file will be copied into a temporary directory and displayed via the R HTTP help
server with, in the same way as a gvis-object:

R> plot.gvis("/Users/JoeBloggs/myGoogleVisChart.html")

Please note that this feature of plot.gis was introduced to googleVis with version
0.3.2.

2.5 Setting default behaviour of print.gvis and plot.gvis

In googleVis version 0.3.2 the function plot.gvis gained the same argument as
print.gvis: tag. By default the tag argument is set to NULL in plot.gvis and
the plot function will display its output in a browser window. However, if tag is
not NULL the function plot.gvis will behave exactly like print.gvis.

The default tag can be set for both functions globally via the options() func-
tion. On package load googleVis sets options(gvis.print.tag=’html’) and
options(gvis.plot.tag=NULL).

Suppose you would set options(gvis.plot.tag=’chart’) then all following plot
statements would print the chart part of the gvis-object only, without opening a
browser window. This might seem a bit odd at first, yet it becomes helpful when
you write R Markdown files for knitr or files for other packages such as R.rsp.

While you draft your file you may want to see the output of googleVis in an
interactive way, so you set options(gvis.plot.tag=NULL) at the top of the file
and you change the setting to ’chart’ before you parse the file, say with knitr.
This will ensure that all plot statements return the HTML code of the chart, rather
than opening browser windows. Section 4 on page 31 provides more details and a
little knitr example.

2.6 Combining charts with gvisMerge

The function gvisMerge takes two gvis-objects and merges the underlying com-
ponents into one page. The charts are aligned either horizontally or vertically next
to each other in an HTML table.

The output of gvisMerge is a gvis-object again. This allows us to apply the same
function iteratively to create more complex chart layouts. The following example,
see Figure 4, aligns a geo chart and table below each other, and combines the output
with a motion chart to the right:

17

Figure 4: Three charts combined with gvisMerge.

R> G <- gvisGeoChart(Exports, "Country", "Profit",

+ options=list(width=200, height=100))

R> T <- gvisTable(Exports,

+ options=list(width=200, height=270))

R> M <- gvisMotionChart(Fruits, "Fruit", "Year",

+ options=list(width=400, height=370))

R> GT <- gvisMerge(G,T, horizontal=FALSE)

R> GTM <- gvisMerge(GT, M, horizontal=TRUE,

+ tableOptions="bgcolor=\"#CCCCCC\" cellspacing=10")

R> plot(GTM)

2.7 Setting options

Setting the various options of a googleVis objects can be a bit cumbersome at
first. The options follow those of the Google Chart Tools and can be set via a
named list using the argument options. In the following example we create a line
chart and set various options6, see the output in Figure 5.

R> df <- data.frame(country=c("US", "GB", "BR"),

+ val1=c(1,3,4), val2=c(23,12,32))

6Please refer to the help file of the individual googleVis functions, as the options can vary
from chart to chart.

18

Figure 5: A line chart with various options set.

R> Line <- gvisLineChart(df, xvar="country", yvar=c("val1","val2"),

+ options=list(

+ title="Hello World",

+ titleTextStyle="{color:'red',

+ fontName:'Courier',

+ fontSize:16}",

+ backgroundColor="#D3D3D3",

+ vAxis="{gridlines:{color:'red', count:3}}",

+ hAxis="{title:'Country', titleTextStyle:{color:'blue'}}",

+ series="[{color:'green', targetAxisIndex: 0},

+ {color: 'orange',targetAxisIndex:1}]",

+ vAxes="[{title:'val1'}, {title:'val2'}]",

+ legend="bottom",

+ curveType="function",

+ width=500,

+ height=300

+))

R> plot(Line)

As you can see from the example above, the simpler options can be set by name=value,
e.g. width=500, while the more complex options with sub-components are listed in
curly brackets {}, and arrays, e.g. to define the two axes, use square brackets [].

Here is another example setting the colour axis of a geo chart, see Figure 6:

R> Geo <- gvisGeoChart(CityPopularity, locationvar='City',

+ colorvar='Popularity',

+ options=list(region='US', height=350,

19

+ displayMode='markers',

+ colorAxis="{values:[200,400,600,800],

+ colors:[\'red', \'pink\', \'orange',\'green']}")

+)

R> plot(Geo)

Figure 6: A geo chart with options set for a colour axis.

2.7.1 Chart Editor

A special option for all charts is gvis.editor, which adds an edit button to the
page, allowing the user to edit, change and customise the chart on the fly, see
the following example and Figure 7. The content of the list item gvis.editor

describes the label of the browser button7.

R> Editor <- gvisLineChart(df, options=list(gvis.editor='Edit me!'))

R> plot(Editor)

2.7.2 Dealing with apostrophes in column names

The googleVis package converts data frames into JSON objects. The column
names of the resulting JSON tables are encapsulated with single speech marks, see
lines 12 – 16 of the code example on page 5.

Hence apostrophes in column names of your input data frame have to be encapsu-
lated by a double backslash.

7See also https://google-developers.appspot.com/chart/interactive/docs/drawing_

charts#charteditor

20

https://google-developers.appspot.com/chart/interactive/docs/drawing_charts#charteditor
https://google-developers.appspot.com/chart/interactive/docs/drawing_charts#charteditor

Figure 7: Example of googleVis chart with options = list (gvis.editor =

’Edit me!’).

Here is a little example, see the output in Figure 8.

R> df <- data.frame("Year"=c(2009,2010), "Lloyd\\'s"=c(86.1, 93.3),

+ "Munich Re\\'s R/I"=c(95.3, 100.5),

+ check.names=FALSE)

R> df

Year Lloyd\\'s Munich Re\\'s R/I

1 2009 86.1 95.3

2 2010 93.3 100.5

R> CR <- gvisColumnChart(df, options=list(vAxis='{baseline:0}',

+ title="Combined Ratio %",

+ legend="{position:'bottom'}"))

R> plot(CR)

3 Embedding googleVis in web sites

3.1 Integrating gvis objects in existing sites

Suppose you have an existing web page and would like to integrate the output of
a googleVis function, such as gvisMotionChart. In this case you only need the

21

Figure 8: Visualising data with apostrophes in column names.

chart output from gvisMotionChart. So you can either copy and paste the output
from the R console

R> print(M, 'chart') ## or cat(M$html$chart)

into your existing html page, or write the content directly into a file

R> print(M, 'chart', file='myfilename')

and process it from there.

3.2 Using googleVis output with WordPress

WordPress is a popular web software for creating websites and blogs. Here we give
some tips about the usage with googleVis output.

By default WordPress does not allow JavaScript code (and hence googleVis out-
put) to be inserted into a page. However, additional plugins allow you to extend
the functions of WordPress.

One option of embedding JavaScript code inside a WordPress post is to use the
“custom fields shortcode” plugin8. The plugin allows you to create a custom field
for the googleVis code, which can be referred to in your article.

Suppose you created a motion chart in R:

R> M <- gvisMotionChart(Fruits, "Fruit", "Year",

+ options=list(width=400, height=370))

8http://wordpress.org/extend/plugins/custom-fields-shortcode

22

http://wordpress.org/
http://wordpress.org/extend/plugins/custom-fields-shortcode

Figure 9: Including googleVis output in a WordPress blog entry.

Copy the chart code, e.g. from

R> print(M, 'chart')

and paste it into the value text area of a custom field in WordPress, e.g. with in-
stance name Fruits. To include the motion chart into your article add [cf]Fruits[/cf]
into the post, see Figure 9 for an illustration.

3.3 Using googleVis output with Google Sites, Blogger, etc.

Google Charts can be used with other Google products such as Google Sites, Blogger
or Google Code wiki pages. However, in most cases the chart has to be embedded
as a Google Gadget. Google Gadgets are written in XML and can have HTML
and Javascript components. Here is an example of a ’Hello World’ program written
using Google Gadget technology from Wikipedia.

<?xml version="1.0" encoding="UTF-8" ?>

<Module>

<ModulePrefs title="simple hello world example" />

<Content type="html">

<![CDATA[

Hello, world!

]]>

</Content>

</Module>

23

http://en.wikipedia.org/wiki/Google_Gadgets

The googleVis package comes with the function createGoogleGadget, which
takes a gvis-object and wraps it into an XML gadget file. Here is an example with
a motion chart:

R> M <- gvisMotionChart(Fruits, "Fruit", "Year")

R> G <- createGoogleGadget(M)

R> cat(G, file="myGadget.xml")

In order to use the gadget, the file myGadget.xml has to be hosted online, e.g. using
Google Docs. Suppose the URL to the gadget is http://example.com/myGadget.xml,
than you can embed the gadget

• in a Google Site via the menu:

”Insert” -> ”More gadgets ...” -> ”Add gadget URL”,

• in a Google Code wiki via the wiki:gadget tag, e.g.:

<wiki:gadget url="http://example.com/gadget.xml" />,

• in Blogger via the design tab, see site gadgets.

However, the situation is different again, if you would like to include the googleVis
output into a blogger post. In this case a gadget does not work. You can either
copy and paste the chart directly into your post, but then it does not seem to work
with MS Internet Explorer, or you use an indirect approach. This means that the
googleVis chart has to be hosted on a separate page (e.g. in a public Dropbox
folder) and is embedded into the blog post by using the <iframe> tag, e.g.:

<iframe width="100%" height="400px" frameborder="0"

src="http://example.com/myGoogleVisChart.html">

</iframe>

For an example see the following blog entry: http://lamages.blogspot.com/2011/09/including-
googlevis-output-into-blogger.html.

3.4 Embedding googleVis in web sites dynamically

In this section we provide examples how the googleVis functions can be embedded
into web sites dynamically.

The R packages R.rsp [Ben12] and brew [Hor11a] are two options to integrate
R snippets into html code. While the R.rsp package comes with its own internal
web server, brew requires the Apache HTTP server [Fou10a] with the RApache
[Hor11b] module installed. Please note that currently the RApache module only
runs on UNIX/Linux and Mac OS X.

24

http://lamages.blogspot.com/2011/09/including-googlevis-output-into-blogger.html
http://lamages.blogspot.com/2011/09/including-googlevis-output-into-blogger.html

Since version 2.11.0 R ships with its own internal web server and with Rook [Hor13]
and shiny [RI13] there are also two alternatives that use this facility. Both pack-
ages allow users to deploy web application locally with very little overhead. The
shiny framework is the newest and certainly easiest option to get started with web
apps using R and googleVis .

3.4.1 Using googleVis with R.rsp

The R.rsp package allows the user to integrate R code into html code. The R
code is parsed by the R.rsp web server and executed at run time.

As an example, we embed a motion chart into a rsp-page:

<html>

<body>

<% library(googleVis)

M <- gvisMotionChart(Fruits, idvar="Fruit", timevar="Year") %>

<%= M$html$chart %>

</body>

</html>

The R code included in <%. . .%> is executed when read by the R.rsp HTTP server,
but no R output will be displayed. To embed the R output into the html code we
have to add an equal sign, <%=. . .%>, which acts as a cat statement.

You find an example as part of the googleVis package. This example can be
displayed via the following R command:

R> library(R.rsp)

R> browseRsp()

R> # Follow the link for googleVis in the opening browser window

The actual rsp-file is located within the googleVis package directory and again R
allows you to find the file with the following command:

R> file.path(system.file("rsp", package = "googleVis"), "index.rsp")

For more information read the documentation of the R.rsp package.

3.4.2 Using googleVis with RApache and brew

RApache supports web application development using R and the Apache HTTP
server. The RApache module embeds the R interpreter into the Apache web server.
However, as we would like to mix R and html code we also need a parser and this
is where the R package brew comes into place.

25

Files sitting in a dedicated brew folder of the HTTP repository are parsed by brew

when opened in the browser. The R code is executed with RApache and the output is
embedded into the site. Hence the approach is similar to R.rsp with the difference
that the two tasks are split. This has the advantage that R does not have to run in
a separate window.

Detailed installation instructions for RApache are available on the project site:
http://rapache.net/manual.html, for specific comments on Mac OS X see: http://-
worldofrcraft.blogspot.com/2010/08/installing-rapache-on-mac-os-x-snow.html

Following the installation of RApache you will have to configure Apache. Most
likely you have to add something along the following lines to your apache2.conf or
httpd.conf file (often found in /etc/httpd or /private/etc/apache2/httpd.
conf on Mac OS X):

LoadModule R_module /usr/lib/apache2/modules/mod_R.so

On Mac OS X more likely to be:

LoadModule R_module libexec/apache2/mod_R.so

ROutputErrors

RSourceOnStartup "/var/www/rapache/R/startup.R"

On Mac OS X the www folder is often equivalent to:

/Library/WebServer/Documents/

The first line loads the R module when the Apache web server is started, the second
line deals with error handling, while the startup.R file is suitable for initial set ups,
e.g. libraries and global variables:

Ensure the packages are installed so that mod_R

has access to them, e.g. not in your home folder

library{googleVis}

library{lattice}

library{Cairo}

MyGlobalVar <- 42

To test that RApache is working open http://localhost/RApacheInfo and you should
find details about your system, an example can be found on the RApache site:
http://biostat.mc.vanderbilt.edu/rapache/files/RApacheInfo.html

The next step is to install the brew R package in the usual way:

R> install.packages('brew')

Following this we have to tell Apache that files in a specific folder should be parsed
by brew. Again we edit the apache2.conf or httpd.conf and add the connection
of the RHandler with the function brew:

<Directory /var/www/rapache/brew>

26

http://rapache.net/manual.html
http://worldofrcraft.blogspot.com/2010/08/installing-rapache-on-mac-os-x-snow.html
http://worldofrcraft.blogspot.com/2010/08/installing-rapache-on-mac-os-x-snow.html
http://localhost/RApacheInfo
http://biostat.mc.vanderbilt.edu/rapache/files/RApacheInfo.html

On Mac OS more likely to be something like:

<Directory /Library/WebServer/Documents/rapache/brew>

SetHandler r-script

RHandler brew::brew

</Directory>

That’s all. Restart the HTTP daemon and you can start placing files in the brew

directory and access them via http://localhost/rapache/brew/filename, e.g.
a file containing:

<html>

<body>

<h1>Fruits</h1>

<% library(googleVis)

M <- gvisMotionChart(Fruits, idvar="Fruit", timevar="Year") %>

<%= M$html$chart %>

</body>

</html>

You will notice that the brew syntax is very similar to rsp. For more information
read the documentation of the RApache module and brew package. You find two
simple examples of brew files in the googleVis package. Again the following R
command shows you the folder path:

R> system.file("brew", package = "googleVis")

3.4.3 Using googleVis with Rook

Rook [Hor13] is a web server interface for R, written by Jeffrey Horner, the author
of rApache and brew. Compared to other web frameworks Rook appears incredible
lightweight. Rook doesn’t need any configuration. It is an R package, which
works out of the box with the R HTTP server. That means no configuration files
are needed. No files have to be placed in particular folders. Instead, Rook web
applications can be run on a local desktop. However, Rook requires some knowledge
of the HTTP protocol.

Here is a Rook app example with googleVis. It displays a little R data frame in a
googleVis table by default. The user can change the visualisation by clicking on
the Edit me! button and upload her/his own CSV-file, see Figure 10.

R> require(Rook)

R> require(googleVis)

R> s <- Rhttpd$new()

R> s$start(listen='127.0.0.1')

R> my.app <- function(env){

27

Figure 10: Screen shot of a Rook app with googleVis output.

+ ## Start with a table and allow the user to upload a CSV-file

+ req <- Request$new(env)

+ res <- Response$new()

+

+ ## Provide some data to start with

+ ## Exports is a sample data set of googleVis

+ data <- Exports[,1:2]

+ ## Add functionality to upload CSV-file

+ if (!is.null(req$POST())) {

+ ## Read data from uploaded CSV-file

+ data <- req$POST()[["data"]]

+ data <- read.csv(data$tempfile)

+ }

+ ## Create table with googleVis

+ tbl <- gvisTable(data,

+ options=list(gvis.editor="Edit me!",

+ height=350),

+ chartid="myInitialView")

+ ## Write the HTML output and

+ ## make use of the googleVis HTML output.

+ ## See vignette('googleVis') for more details

28

+ res$write(tbl$html$header)

+ res$write("<h1>My first Rook app with googleVis</h1>")

+ res$write(tbl$html$chart)

+ res$write('

+ Read CSV file:<form method="POST" enctype="multipart/form-data">

+ <input type="file" name="data">

+ <input type="submit" name="Go">\n</form>')

+ res$write(tbl$html$footer)

+ res$finish()

+ }

R> s$add(app=my.app, name='googleVisTable')

R> ## Open a browser window and display the web app

R> s$browse('googleVisTable')

3.4.4 Using googleVis with shiny

Shiny9 is a package by RStudio. Shiny makes it incredibly easy to build interactive
web applications with R.

With version 0.4.0 of googleVis the support for shiny [RI13] apps has been
added. Joe Cheng contributed the renderGvis function which allows users to use
googleVis output in shiny in a similar way to other plotting functions. Note that
shiny version ≥ 0.4.0 is required.

The following example has been taken from the help file of renderGvis. It displays
a scatter chart where the user can select the data set to be displayed, see also the
screen shot in Figure 11.

R> # server.R

R> library(googleVis)

R> shinyServer(function(input, output) {

+ datasetInput <- reactive({

+ switch(input$dataset,

+ "rock" = rock,

+ "pressure" = pressure,

+ "cars" = cars)

+ })

+

+ output$view <- renderGvis({

+ gvisScatterChart(datasetInput())

+ })

+ })

R> # ui.R

R> shinyUI(pageWithSidebar(

9http://www.rstudio.com/shiny/

29

http://www.rstudio.com/shiny/

+ headerPanel("googleVis on Shiny"),

+ sidebarPanel(

+ selectInput("dataset", "Choose a dataset:",

+ choices = c("rock", "pressure", "cars"))

+),

+ mainPanel(

+ htmlOutput("view")

+)

+))

Figure 11: Screen shot a shiny app with googleVis output.

You can run the example locally with the following statement.

R> library(shiny) ## Version >= 0.4.0 required

R> runApp(system.file("shiny/", package="googleVis"))

30

Further examples have been published on Markus’ blog: http://lamages.blogspot.
co.uk/search/label/shiny

4 Using googleVis with knitr

Using googleVis with knitr 10 [Xie13] is a convient way of creating interactive
reproducible reports. The approach taken by knitr is similar to Sweave, you can
combine R code with text and formatting tags. However, knitr can also export to
HTML, which is required to embed googleVis charts.

To include googleVis output into a knitr document you have to set the chunk
option results to ’asis’ and print the chart element only, as demonstrated in
the following example:

```{r results='asis'}

M <- gvisMotionChart(Fruits, "Fruit", "Year",

options=list(width=550, height=450))

print(M, 'chart')

```

A little example was published in a blog post: http://lamages.blogspot.co.

uk/2012/05/interactive-reports-in-r-with-knitr-and.html

Version 0.3.2 of googleVis introduced ’tag’ as a new argument to the plot func-
tion plot.gvis, see also page 17. This argument is by default set to NULL and can
be set globally outside the plot function via options().

The argument tag influences the behaviour of the plot function. The tag pa-
rameter can be the same as for the print function print.gvis. Indeed, setting
options(gvis.plot.tag = ’chart’) will change the behaviour of plot to print,
so plot(x) will no longer open a browser window, but produce the same output as
print(x, tag=’chart’), if x is a gvis-object.

Hence, setting the option gvis.plot.tag in a knitrmarkdown Rmd-file to ’chart’
will automatically turn all following plot statements into html output, see the ex-
ample below and Figure 12.

Markdown example with knitr and googleVis

===

This is a little Markdown example file.

Set the googleVis options first.

In this case change the behaviour of plot.gvis

```{r setOptions, message=FALSE}

library(googleVis)

10http://yihui.name/knitr/

31

http://lamages.blogspot.co.uk/search/label/shiny
http://lamages.blogspot.co.uk/search/label/shiny
http://lamages.blogspot.co.uk/2012/05/interactive-reports-in-r-with-knitr-and.html
http://lamages.blogspot.co.uk/2012/05/interactive-reports-in-r-with-knitr-and.html
http://yihui.name/knitr/


Figure 12: Screen shot of the markdown example output

op <- options(gvis.plot.tag='chart')

```

The following plot statements will automatically return the HTML

required for the 'knitted' output.

Combo chart

```{r ComboExample, results='asis', tidy=FALSE}

## Add the mean

CityPopularity$Mean=mean(CityPopularity$Popularity)

CC <- (CityPopularity, xvar='City',

yvar=c('Mean', 'Popularity'),

options=list(seriesType='bars',

width=450, height=300,

title='City Popularity',

32



series='{0: {type:\"line\"}}'))

plot(CC)

```

Example of gvisComboChart with R code shown above.

Place two charts next to each other

```{r gvisMergeExample, results='asis', echo=FALSE}

Geo <- gvisGeoChart(Exports, locationvar='Country', colorvar='Profit',

options=list(height=300, width=350))

Tbl <- gvisTable(Exports, options=list(height=300, width=200))

plot(gvisMerge(Geo, Tbl, horizontal=TRUE))

``````

Example of a gvisGeoChart with gvisTable and R code hidden.

Motion Chart

```{r MotionChartExample, results='asis', tidy=FALSE}

M <- gvisMotionChart(Fruits, 'Fruit', 'Year',

options=list(width=400, height=350))

plot(M)

```

Please note that the Motion Chart is only displayed when hosted on a

web server, or is placed in a directory which has been added to the

trusted sources in the [security settings of Macromedia]

(http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager04.html

See the googleVis package vignette for more details.

```{r resetOptions}

## Set options back to original options

options(op)

```

Note that you can use the options() command in your knitr file to switch between
an interactive mode, where you are likely to experiment, via copying and pasting R
code into the console and running knit on the whole file.

A more comprehensive example is given in the help file to ?plot.gvis.

5 Using googleVis in presentations

The Google Chart Tools are designed for web pages, so it should be no surprise
that it can be difficult or impossible to embed googleVis output in traditional
presentation software like MS PowerPoint11, Google Docs, OpenOffice Impress or

11For MS PowerPoint on MS Windows the plug-in liveweb provides the functionality to insert
web pages into a PowerPoint slide and refresh the pages real-time during slide show.

33

http://skp.mvps.org/liveweb.htm

Apple Keynote.

The easiest way is to include screen shots into the slide with links to the live web
pages. But this approach requires the presenter to switch between applications
during her talk. This can be fun, but quite often it is not.

An alternative would be to build the presentation as a web page itself.

The JavaScript library deck.js [Tro11], a jQuery framework for creating HTML
presentations by Caleb Troughton, provides an elegant way of combining the slide
paradigm with web content such as YouTube videos or googleVis output. You find
an example with googleVis charts on mages’ blog: http://lamages.blogspot.
com/2011/11/interactive-presentations.html .

Figure 13: googleVis presentation with deck.js: http://dl.dropbox.com/u/

7586336/blogger/deck.js/googleVis/index.html

An alternative to deck.js is slidy12 in combination with knitr and pandoc13, see the
following blog post for more details: http://lamages.blogspot.co.uk/2012/

05/interactive-html-presentation-with-r.html. The basic idea is that you
create a Markdown file with knitr and you post-process the output with pandoc
into a slidy HTML presentation.

Figure 14: googleVis presentation with slidy: http://lamages.blogspot.co.

uk/2012/05/interactive-html-presentation-with-r.html

12http://www.w3.org/Talks/Tools/Slidy2/
13http://johnmacfarlane.net/pandoc/

34

http://lamages.blogspot.com/2011/11/interactive-presentations.html
http://lamages.blogspot.com/2011/11/interactive-presentations.html
http://dl.dropbox.com/u/7586336/blogger/deck.js/googleVis/index.html
http://dl.dropbox.com/u/7586336/blogger/deck.js/googleVis/index.html
http://lamages.blogspot.co.uk/2012/05/interactive-html-presentation-with-r.html
http://lamages.blogspot.co.uk/2012/05/interactive-html-presentation-with-r.html
http://lamages.blogspot.co.uk/2012/05/interactive-html-presentation-with-r.html
http://lamages.blogspot.co.uk/2012/05/interactive-html-presentation-with-r.html
http://www.w3.org/Talks/Tools/Slidy2/
http://johnmacfarlane.net/pandoc/

6 Beyond R

In this section we present ideas which go beyond the usual coding in R and are
somewhat experimental.

6.1 Registering to catch events

Google visualisations can fire and receive events 14. It exposes the following two
JavaScript methods:

• google.visualization.events.trigger() fires an event,

• google.visualization.events.addListener() listens for events.

Here is an example of registering to receive the selection event from the Google
documentation:

var table = new google.visualization.Table(document.getElementById('table_div'));

table.draw(data, options);

google.visualization.events.addListener(table, 'select', selectHandler);

function selectHandler() {

alert('A table row was selected');

}

We will only deal with this special case of a ’select’ event of the ’addListner’ method.
This event is available for most visualisations and acts on user interactions, e.g. user
selection clicks.

The ’addListener’ method expects JavaScript code, which can be embedded into a
gvis-object via options as (undocumented) parameter gvis.listener.jscode.

Here are some examples:

Look up the selected item in Wikipedia:

R> jscode <- "window.open('http://en.wikipedia.org/wiki/'

+ + data.getValue(chart.getSelection()[0].row,0)); "

R> J1 <- gvisGeoMap(Exports, locationvar='Country', numvar='Profit',

+ options=list(dataMode="regions", gvis.listener.jscode=jscode))

R> plot(J1)

In the same way we can use the code in other charts, e.g. org- or line chart:

14http://code.google.com/apis/chart/interactive/docs/reference.html#addlistener

35

http://code.google.com/apis/chart/interactive/docs/reference.html#addlistener

R> plot(gvisOrgChart(Regions, options=list(gvis.listener.jscode=jscode)))

R> plot(gvisLineChart(Regions[,c(1,3)], options=list(gvis.listener.jscode=jscode)))

In the following more advanced example the selected value of a table is displayed in
a message box:

R> jscode <- "

+ var sel = chart.getSelection();

+ var row = sel[0].row;

+ var text = data.getValue(row,1);

+ alert(text);

+ "

R> J2 <- gvisTable(Population, options=list(gvis.listener.jscode=jscode))

R> plot(J2)

For more details see the demo(EventListener) and Google Chart Tools Reference.

7 Frequent ask questions – FAQ

7.1 Can I use googleVis output in PDF files?

No, not directly.

The Google Chart Tools API is designed for dynamic web output on your screen and
not on paper. See also the section 5, page 33, which covers how to use googleVis
in presentations.

Note that this vignette uses screen shots to include examples of googleVis charts.

7.2 Can I change the colour of the bubbles in motion charts?

No, unfortunately not.

The colours are set by the Google Chart Tools API and cannot be changed by the
user.

7.3 Can I change the icons in Maps?

No, not via gvisMap.

However, you can upload your data to a Google Fusion Table and link it to a second
table which defines the icons. See the Google Fusion Table support page for more
details: http://support.google.com/fusiontables/answer/2679986?hl=en

36

https://developers.google.com/chart/interactive/docs/reference
http://support.google.com/fusiontables/answer/2679986?hl=en

7.4 Why can’t I see motion charts when I open them from a
local directory?

See section 2.4 on page 16

7.5 Why can’t I see motion charts on my iPad/iPhone?

Motion charts (also geo maps and annotated time lines) are rendered in your browser
using Flash, unlike most other charts which use HTML5. Unfortunately Flash is not
directly supported on iOS devices such as iPads and iPhones.

Apparently there is little appetite at Google to migrate motion charts to HTML5
or other technologies, see the following Google Visualisation API news group post:
http://goo.gl/5Zyuw.

7.6 How can I change the look and feel of the charts?

The charts have a lot of options which allow you to change the look and feel
of the output, see the help files for more details. However, googleVis provides
only an interface to the Google Chart Tools. If you have specific questions to the
charts then please join the Google Visualisation API newsgroup: http://groups.
google.com/group/google-visualization-api.

For frequent ask questions regarding the API check: https://developers.google.
com/chart/interactive/faq.

7.7 Is it possible to use googleVis in corporate work?

Review the Google Terms of Service (https://developers.google.com/terms/)
and get in touch with your colleagues in IT / Legal. If in doubt contact Google
directly.

7.8 Bugs and issues

Should you find any issues or bugs with googleVis, then please drop us a line or add
them to our issues list: http://code.google.com/p/google-motion-charts-with-r/
issues/list

37

http://goo.gl/5Zyuw
http://groups.google.com/group/google-visualization-api
http://groups.google.com/group/google-visualization-api
https://developers.google.com/chart/interactive/faq
https://developers.google.com/chart/interactive/faq
https://developers.google.com/terms/
http://code.google.com/p/google-motion-charts-with-r/issues/list
http://code.google.com/p/google-motion-charts-with-r/issues/list

8 Contact

8.1 Collaboration

Obviously, the package is work in progress and there are many other functions of
the Google Chart Tools which are still untouched.

Please feel free to send us an email if you would like to be kept informed of new
versions, or if you have any feedback, ideas, suggestions or would like to collaborate,
our address is rvisualisation@gmail.com.

8.2 Citation

Please cite R and googleVis if you use it in your work or publications. Use

R> citation("googleVis")

and

R> citation()

for bib-entries and information on how to cite the software.

8.3 Training and consultancy

Please contact us if you would like to discuss training or consultancy: rvisualisa-
tion@gmail.com

References

[Ben12] Henrik Bengtsson. R.rsp: R server pages. http://CRAN.R-project.

org/package=R.rsp, 2012. R package version 0.8.2.

[Bos12] Mike Bostock. Data-Driven Documents (d3.js), a visualization framework
for internet browsers running JavaScript. http://d3js.org, 2012.

[Fou10a] Apache Foundation. Apache HTTP Server 2.2. http://httpd.apache.
org, 2010.

[Fou10b] Gapminder Foundation. Gapminder. http://www.gapminder.org,
2010.

[Fou10c] Open Source Geospatial Foundation. Openlayers: Free maps for the web.
http://www.openlayers.org/, 2010.

38

mailto:rvisualisation@gmail.com
mailto:rvisualisation@gmail.com?subject=Training-and-consultancy
mailto:rvisualisation@gmail.com?subject=Training-and-consultancy
http://CRAN.R-project.org/package=R.rsp
http://CRAN.R-project.org/package=R.rsp
http://d3js.org
http://httpd.apache.org
http://httpd.apache.org
http://www.gapminder.org
http://www.openlayers.org/

[FR10] Ben Fry and Casey Reas. Processing an open source programming lan-
guage and environment to create images, animations, and interactions.
http://processing.org/, 2010.

[GdC11] Markus Gesmann and Diego de Castillo. Using the Google Visualisation
API with R. The R Journal, 3(2):40–44, December 2011.

[GdC13] Markus Gesmann and Diego de Castillo. googleVis: Using
the Google Chart Tools with R. http://code.google.com/p/

google-motion-charts-with-r/, 2013. R package version 0.4.3.

[GHN10] John Glazebrook, Guenther Harrasser, and George Neusse. Open flash
chart. http://teethgrinder.co.uk/open-flash-chart/, 2010.

[Hor11a] Jeffrey Horner. brew: Templating framework for report generation. http:
//CRAN.R-project.org/package=brew, 2011. R package version 1.0-6.

[Hor11b] Jeffrey Horner. RApache: Web application development with R and
Apache. http://www.rapache.net/, 2011.

[Hor13] Jeffrey Horner. Rook: Rook - a web server interface for R, 2013. R
package version 1.0-9.

[Inc12a] Google Inc. Google API Terms of Service. https://developers.

google.com/terms/, 2012.

[Inc12b] Google Inc. Google Chart Tools. https://google-developers.

appspot.com/chart/interactive/docs/gallery, 2012.

[Inc12c] Google Inc. Google Motion Chart API. https://google-developers.
appspot.com/chart/interactive/docs/gallery/motionchart.

html, 2012.

[Inc12d] Google Inc. Google Public Data Explorer. http://www.google.com/

publicdata/home, 2012.

[Inc12e] Google Inc. Google Visualisation Reference. https://developers.

google.com/chart/interactive/docs/reference, 2012.

[JSO06] JSON.org. JSON. http://www.json.org/, 2006. RFC 4627 applica-
tion/json.

[Lab10] UC Berkeley Visualization Lab. flare: Data visualisation for the web.
http://flare.prefuse.org, 2010.

[Lan12] Duncan Temple Lang. RJSONIO: Serialize R objects to JSON, JavaScript
Object Notation. http://www.omegahat.org/RJSONIO/, 2012. R pack-
age version 1.0-1.

[RI13] RStudio and Inc. shiny: Web Application Framework for R, 2013. R
package version 0.4.0.

39

http://processing.org/
http://code.google.com/p/google-motion-charts-with-r/
http://code.google.com/p/google-motion-charts-with-r/
http://teethgrinder.co.uk/open-flash-chart/
http://CRAN.R-project.org/package=brew
http://CRAN.R-project.org/package=brew
http://www.rapache.net/
https://developers.google.com/terms/
https://developers.google.com/terms/
https://google-developers.appspot.com/chart/interactive/docs/gallery
https://google-developers.appspot.com/chart/interactive/docs/gallery
https://google-developers.appspot.com/chart/interactive/docs/gallery/motionchart.html
https://google-developers.appspot.com/chart/interactive/docs/gallery/motionchart.html
https://google-developers.appspot.com/chart/interactive/docs/gallery/motionchart.html
http://www.google.com/publicdata/home
http://www.google.com/publicdata/home
https://developers.google.com/chart/interactive/docs/reference
https://developers.google.com/chart/interactive/docs/reference
http://www.json.org/
http://flare.prefuse.org
http://www.omegahat.org/RJSONIO/

[Ros06] Hans Rosling. TED Talk: Hans Rosling shows the best stats you’ve ever
seen. http://www.ted.com/talks/hans_rosling_shows_the_best_

stats_you_ve_ever_seen.html, 2006.

[RtICsg10] IBM Research and the IBM Cognos software group. Many eyes. http:
//www-958.ibm.com/software/data/cognos/manyeyes/, 2010.

[Saa10] Sebastián Pérez Saaibi. R/RMETRICS Generator Tool for Google Mo-
tion Charts. https://www.rmetrics.org/, 2010. Meielisalp, Lake Thune
Switzerland, June 27 - July 1, 2010.

[Tro11] Caleb Troughton. deck.js: Modern HTML Presentations, 2011. jQuery
framework for creating HTML presentations.

[Xie13] Yihui Xie. knitr: A general-purpose package for dynamic report generation
in R, 2013. R package version 1.1.

40

http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.html
http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.html
http://www-958.ibm.com/software/data/cognos/manyeyes/
http://www-958.ibm.com/software/data/cognos/manyeyes/

	Introduction
	Motivation
	Google Chart Tools

	The googleVis package
	Installation
	Using the googleVis package
	Motion Chart Example
	Displaying gvis objects locally
	Setting default behaviour of print.gvis and plot.gvis
	Combining charts with gvisMerge
	Setting options
	Chart Editor
	Dealing with apostrophes in column names

	Embedding googleVis in web sites
	Integrating gvis objects in existing sites
	Using googleVis output with WordPress
	Using googleVis output with Google Sites, Blogger, etc.
	Embedding googleVis in web sites dynamically
	Using googleVis with R.rsp
	Using googleVis with RApache and brew
	Using googleVis with Rook
	Using googleVis with shiny

	Using googleVis with knitr
	Using googleVis in presentations
	Beyond R
	Registering to catch events

	Frequent ask questions – FAQ
	Can I use googleVis output in PDF files?
	Can I change the colour of the bubbles in motion charts?
	Can I change the icons in Maps?
	Why can't I see motion charts when I open them from a local directory?
	Why can't I see motion charts on my iPad/iPhone?
	How can I change the look and feel of the charts?
	Is it possible to use googleVis in corporate work?
	Bugs and issues

	Contact
	Collaboration
	Citation
	Training and consultancy

	References

