R/utility.r

Defines functions sizein getReads getCounts readSampleInfo

Documented in getCounts getReads readSampleInfo

# Functions for data input/output/preprocessing

# ====================================================================
# Exported Functions

# --------------------------------------------------------------------
#' Load a CSV containing required information about each sample
#'
#' The CSV file must contain the following columns: "sample" - unique sample IDs, "group" - group IDs, "bam" - path to BAM file containing aligned reads for the sample. Columns with other names will be retained but ignored. Note that in subsequent reporting of pattern strings (where each digit represents a group), digits for each group will be ordered in the order they first appear in this samplesheet.
#' @param file Path to the CSV samplesheet to open. Must contain the columns described above.
#' @param colors Vector of colors (one for each group) in same order as groups appear in the sample file. These will be uniform colors used in the plotting functions for these groups. Give colors as hex codes. If none are provided they will be auto-selected using RColorBrewer. Alternatively, if there is a column named "color" in the CSV, then these will always be used.
#' @return A data.frame of the samplesheet that will be valid input to the "samp" arguments of other functions.
#' @export
readSampleInfo <- function(file=NULL,colors=NULL)
{
	if(is.null(file)){stop("Must provide a path to a file to open.")}
	if(!file.exists(file)){stop(paste("Could not open: ",file,sep=""))}
	samplesheet <- read.csv(file, header=TRUE, stringsAsFactors=FALSE)
	if(sum(c("sample","group","bam") %in% colnames(samplesheet))!=3){stop("CSV must contain columns: sample, group, bam")}
	nsamp <- nrow(samplesheet)
	ngroup <- length(unique(samplesheet$group))
	message(paste("Found ", nsamp, " samples in ", ngroup, " groups",sep=""))
	grouporder <- unique(samplesheet$group)
	samplesheet$group <- factor(samplesheet$group,levels=grouporder,ordered=TRUE)
	message(paste("Group order for pattern and contrast digits will be: ", paste(grouporder,collapse=", ", sep=""), sep=""))
	message("Number of samples in each group:")
	print(summary(samplesheet$group))
	samplesheet <- samplesheet[order(samplesheet$group,samplesheet$sample),]

	if(is.null(colors) & sum(colnames(samplesheet)=="color")==0)
	{
		message("Auto-picking group colors from RColorBrewer")
		if(ngroup<=9)
		{
			colors <- RColorBrewer::brewer.pal(ngroup,"Set1")
		} else
		{
			colors <- colorRampPalette(brewer.pal(9,"Set1"))(ngroup)
		}
		samplesheet$color <- colors[as.numeric(samplesheet$group)]
	} else if(!is.null(colors))
	{
		if(length(colors)!=ngroup){stop("colors vector must equal number of groups in file")}
		samplesheet$color <- colors[as.numeric(samplesheet$group)]
	}

	samplesheet	
}
# --------------------------------------------------------------------

# --------------------------------------------------------------------
#' Produce a GRanges with counts of overlapping reads for a set of ranges
#'
#' Compute counts in non-overlapping windows genome-wide on the chromosomes given in chrs and return as a GRanges object. The values() of the GRanges will contain a table of counts for each sample at each window.
#' @param samp Sample data.frame from readSampleInfo()
#' @param reads Output from getReads()
#' @param ranges Count within regions given by a GRanges object only
#' @param chrs Character vector of chromosome names to select
#' @param winsize Size of the non-overlapping windows
#' @param ncore Number of parallel processes to use
#' @return A GenomicRanges object with values() containing a table of counts for each sample at each window.
#' @export
getCounts <- function(samp, reads, ranges=NULL, chrs=NULL, winsize=50, ncore=1)
{
	# Make GRanges of non-overlapping windows across the genome
	if(is.null(ranges))
	{
		message("Generating Window Positions")
		gb <- Repitools::genomeBlocks(seqlengths(reads[[1]]),chrs=chrs,width=winsize)
	} else
	{
		gb <- ranges
	}

	# Do countOverlaps
	docount <- function(x)
	{
		message("Counting Overlaps for ",x)
		return(countOverlaps(gb,reads[[x]],type="any",ignore.strand=F))
	}
	if(ncore>5){ncore <- 5}
	counts <- mclapply(names(reads),docount,mc.cores=ncore)
	names(counts) <- samp$sample
	counts <- do.call(cbind,counts)

	# Build GRanges object to return so counts are never separated from their coordinates
	message("Building counts GRanges")
	values(gb) <- counts
	message("Counts GRanges Size in Memory=",format(object.size(gb),units="auto"))
	gc()
	return(gb)
}
# --------------------------------------------------------------------

# --------------------------------------------------------------------
#' Store GenomicRanges of BAM reads in a list
#'
#' Store positions of BAM reads in a list of GRanges objects
#' @param samp Sample data.frame from readSampleInfo()
#' @param chrs Character vector of chromosome names to select
#' @param fragsize Average fragment length from the sequencing experiment. Reads will be extended up to this size when computing coverage. If set to the value "paired", valid mate pairs for a paired-end sequencing experiment will be loaded instead.
#' @param ncore Number of parallel processes to use
#' @return A list of GenomicRanges objects where the ranges represent either extended reads or mate pairs from a BAM file.
#' @export
getReads <- function(samp, chrs, fragsize, ncore)
{
	message("Reading BAMs from disk with ",ncore," concurrent processes")
	# Validate BAM existence
	# Check that BAM files exist
	check <- sapply(samp$bam,file.exists)
	if(sum(check)!=nrow(samp)){stop(paste0("BAM file(s) could not be found: ",toString(samp$bam[check==F])))}

	# Check BAIs exist
	check <- sapply(paste0(samp$bam,".bai"),file.exists)
	if(sum(check)!=nrow(samp)){stop(paste0("Bam Index (.bai) file(s) could not be found for: ",toString(samp$bam[check==F])))}

	# Validate asked for chrs are in the BAM
	b1 <- Rsamtools::BamFile(samp$bam[1])
	sl <- seqlengths(b1)
	if(sum(chrs %in% seqlevels(b1)) != length(chrs)){stop(paste0("Could not find chrs: ",toString(chrs[!(chrs %in% seqlevels(b1))]), " in given BAM header"))}

	# Use the index so we don't bother reading in from the unaligned chrs
	which.gr <- GRanges(chrs,IRanges(1,seqlengths(b1)[chrs]))

	bam2gr <- function(bampath)
    {
    	message("Reading BAM file: ",bampath)
    	# What: fields to read in (column filtering)
    	# Flag: records to read in (row filtering)
    	# Which: what sequences must be overlaped (chr/pos filtering)
    	param <- Rsamtools::ScanBamParam(what=character(), which=which.gr, flag=Rsamtools::scanBamFlag(isUnmappedQuery=FALSE))

    	if(fragsize=="paired")
    	{
    		bam.ga <- GenomicAlignments::readGAlignmentPairs(bampath, param = param)
    		bam.gr <- as(bam.ga, "GRanges")
    	} else {
    		bam.ga <- GenomicAlignments::readGAlignments(bampath, param = param)
    		bam.gr <- as(bam.ga, "GRanges")
			message("Extending read length to ",fragsize)
			bam.gr <- resize(bam.gr, fragsize)
    	}
		seqlevels(bam.gr) <- chrs
		seqlengths(bam.gr) <- sl[chrs]
		return(bam.gr)
	}
	reads <- mclapply(samp$bam,bam2gr,mc.cores=ncore)
	names(reads) <- samp$sample
	message("Read GRanges Size in Memory=",format(object.size(reads),units="auto"))
	return(reads)
}
# --------------------------------------------------------------------
# ====================================================================

# ====================================================================
# Internal Functions

# How much memory does any R object x take up?
sizein <- function(x)
{
	format(object.size(x),units="auto")
}
# ====================================================================
jeffbhasin/methylaction documentation built on May 17, 2017, 3:59 p.m.