R/optimize.R

Defines functions has_gr_curr has_fn_curr has_fn_new grad_is_first_stage is_last_stage is_first_stage is_single_stage calc_gr set_gr_curr calc_gr_curr set_fn_curr calc_fn_curr set_fn_new calc_fn_new calc_fn make_counts prepend_stage append_stage make_stages momentum_correction_stage momentum_stage gradient_stage make_sub_stage make_stage make_opt update_progress opt_report opt_clear_cache opt_loop

# Optimizer ---------------------------------------------------------------

# Repeatedly minimizes par using opt until one of the termination conditions
# is met
opt_loop <- function(opt, par, fg, max_iter = 10, verbose = FALSE,
                     store_progress = FALSE, invalidate_cache = FALSE,
                     max_fn = Inf, max_gr = Inf, max_fg = Inf,
                     abs_tol = sqrt(.Machine$double.eps),
                     rel_tol = abs_tol, grad_tol = NULL, ginf_tol = NULL,
                     step_tol = .Machine$double.eps,
                     check_conv_every = 1, log_every = check_conv_every,
                     ret_opt = FALSE) {

  # log_every must be an integer multiple of check_conv_every
  if (!is.null(check_conv_every) && log_every %% check_conv_every != 0) {
    log_every <- check_conv_every
  }

  if (!opt$is_initialized) {
    opt <- mize_init(opt, par, fg, max_iter = max_iter,
                     max_fn = max_fn, max_gr = max_gr, max_fg = max_fg,
                     abs_tol = abs_tol, rel_tol = rel_tol,
                     grad_tol = grad_tol, ginf_tol = ginf_tol,
                     step_tol = step_tol)
  }

  progress <- data.frame()
  step_info <- NULL

  if (verbose || store_progress) {
    step_info <- mize_step_summary(opt, par, fg)
    opt <- step_info$opt
    if (store_progress) {
      progress <- update_progress(step_info, progress)
    }
    if (verbose) {
      opt_report(step_info, print_time = TRUE, print_par = FALSE)
    }
  }

  best_crit <- NULL
  best_fn <- Inf
  best_grn <- Inf
  best_par <- NULL
  if (!is.null(opt$cache$fn_curr)) {
    best_crit <- "fn"
    best_fn <- opt$cache$fn_curr
    best_par <- par
  }
  else if (!is.null(opt$cache$gr_curr)) {
    best_crit <- "gr"
    best_grn <- norm_inf(opt$cache$gr_curr)
    best_par <- par
  }

  iter <- 0
  par0 <- par
  if (max_iter > 0) {
    for (iter in 1:max_iter) {

      if (invalidate_cache) {
        opt <- opt_clear_cache(opt)
      }

      par0 <- par

      # We're going to use this below to guess whether our optimization
      # requires function evaluations (this is only useful if max_fn or max_fg
      # is specified, but not really time consuming)
      if (iter == 1) {
        fn_count_before <- opt$counts$fn
      }
      step_res <- mize_step(opt, par, fg)
      opt <- step_res$opt
      par <- step_res$par

      if (!is.null(opt$terminate)) {
        break
      }

      # After the first iteration, if we don't have the function available for
      # the current value of par, we probably won't have it at future iterations
      # So if we are limiting the number of function evaluations, we need to keep
      # one spare to evaluate fn after the loop finishes for when we return par
      if (iter == 1) {
        if (!has_fn_curr(opt, iter + 1)) {
          if (fn_count_before != opt$counts$fn) {
            opt$convergence$max_fn <- opt$convergence$max_fn - 1
          }
          opt$convergence$max_fg <- opt$convergence$max_fg - 1
        }
      }

      # Check termination conditions
      if (!is.null(check_conv_every) && iter %% check_conv_every == 0) {
        step_info <- mize_step_summary(opt, par, fg, par0)
        opt <- check_mize_convergence(step_info)

        if (store_progress && iter %% log_every == 0) {
          progress <- update_progress(step_info, progress)
        }
        if (verbose && iter %% log_every == 0) {
          opt_report(step_info, print_time = TRUE, print_par = FALSE)
        }

      }

      # might not have worked out which criterion to use on iteration 0
      if (has_fn_curr(opt, iter + 1)) {
        if (is.null(best_crit)) {
          best_crit <- "fn"
        }
        if (best_crit == "fn" && opt$cache$fn_curr < best_fn) {
          best_fn <- opt$cache$fn_curr
          best_par <- par
        }
      }
      else if (has_gr_curr(opt, iter + 1)) {
        if (is.null(best_crit)) {
          best_crit <- "gr"
        }
        if (best_crit == "gr" && norm_inf(opt$cache$gr_curr) < best_grn) {
          best_grn <- norm_inf(opt$cache$gr_curr)
          best_par <- par
        }
      }

      if (!is.null(opt$terminate)) {
        break
      }
    }
  }

  # If we were keeping track of the best result and that's not currently par:
  if (!is.null(best_par)
      && ((best_crit == "fn" && best_fn != opt$cache$fn_curr) ||
          (best_crit == "gr" && best_grn != norm_inf(opt$cache$gr_curr)))) {
    par <- best_par
    opt <- opt_clear_cache(opt)
    opt <- set_fn_curr(opt, best_fn, iter + 1)
    # recalculate result for this iteration
    step_info <- mize_step_summary(opt, par, fg, par0)
    if (verbose) {
      message("Returning best result found")
    }
  }

  if (is.null(step_info) || step_info$iter != iter || is.null(step_info$f)) {
    # Always calculate function value before return
    step_info <- mize_step_summary(opt, par, fg, par0, calc_fn = TRUE)
    opt <- step_info$opt
  }
  if (verbose && iter %% log_every != 0) {
    opt_report(step_info, print_time = TRUE, print_par = FALSE)
  }
  if (store_progress && iter %% log_every != 0) {
    progress <- update_progress(step_info, progress)
  }

  if (store_progress) {
    step_info$progress <- progress
  }
  if (!ret_opt) {
    step_info["opt"] <- NULL
  }

  if (is.null(opt$terminate)) {
    opt$terminate <- list(what = "max_iter", val = opt$convergence$max_iter)
  }
  step_info$terminate <- opt$terminate
  step_info$par <- par
  Filter(Negate(is.null), step_info)
}

# Clears the cache. Results should be identical whether a cache is used or not.
opt_clear_cache <- function(opt) {
  for (name in names(opt$cache)) {
    iter_name <- paste0(name, "_iter")
    if (!is.null(opt$cache[[iter_name]])) {
      opt$cache[[iter_name]] <- "invalid"
    }
  }
  opt
}

# Prints information about the current optimization result
opt_report <- function(step_info, print_time = FALSE, print_par = FALSE,
                       par = NULL) {

  fmsg <- ""
  if (!is.null(step_info$f)) {
    fmsg <- paste0(fmsg, " f = ", formatC(step_info$f))
  }
  if (!is.null(step_info$g2n)) {
    fmsg <- paste0(fmsg, " g2 = ", formatC(step_info$g2n))
  }
  if (!is.null(step_info$ginfn)) {
    fmsg <- paste0(fmsg, " ginf = ", formatC(step_info$ginfn))
  }

  msg <- paste0("iter ", step_info$iter
                , fmsg
                , " nf = ", step_info$nf
                , " ng = ", step_info$ng
                , " step = ", formatC(step_info$step)
  )

  if (!is.null(step_info$alpha)) {
    msg <- paste0(msg, " alpha = ", formatC(step_info$alpha))
  }

  if (print_time) {
    msg <- paste(format(Sys.time(), "%H:%M:%S"), msg, collapse = " ")
  }

  if (print_par) {
    msg <- paste0(msg, " par = ", vec_formatC(par))
  }

  message(msg)
}

# Transfers data from the result object to the progress data frame
update_progress <- function(step_info, progress) {
  res_names <- c("f", "g2n", "ginf", "nf", "ng", "step", "alpha", "mu")
  res_names <- Filter(function(x) { !is.null(step_info[[x]]) }, res_names)

  progress <- rbind(progress, step_info[res_names])

  # Probably not a major performance issue to regenerate column names each time
  colnames(progress) <- res_names
  rownames(progress)[nrow(progress)] <- step_info$iter
  progress
}

# Constructor -------------------------------------------------------------

# Creates an optimizer
make_opt <- function(stages,
                     verbose = FALSE) {
  opt <- list(
    init = function(opt, par, fg, iter) {
      opt <- default_handler("opt", "init", opt, par, fg, iter)
      for (i in 1:length(opt$stages)) {
        opt$stage_i <- i
        opt <- life_cycle_hook(opt$stages[[i]]$type, "init", opt, par, fg, iter)
      }
      opt
    },
    cache = list(),
    stages = stages,
    counts = make_counts(),
    hooks = list(),
    handlers = list(),
    eager_update = FALSE,
    is_terminated = FALSE,
    is_initialized = FALSE,
    verbose = verbose
  )

  if (!is.null(opt$init)) {
    attr(opt$init, 'event') <- 'init opt'
    attr(opt$init, 'name') <- 'handler'
  }
  opt
}

# Creates a stage of the optimizer: a gradient_descent or momentum stage
# normally
make_stage <- function(type, direction, step_size, depends = NULL) {

  stage <- list(
    type = type,
    direction = direction,
    step_size = step_size,
    init = function(opt, stage, par, fg, iter) {
      for (sub_stage_name in c("direction", "step_size")) {
        phase <- paste0(stage$type, " ", sub_stage_name)
        opt <- life_cycle_hook(phase, "init", opt, par, fg, iter)
      }

      list(opt = opt)
    },
    calculate = function(opt, stage, par, fg, iter) {
      for (sub_stage_name in c("direction", "step_size")) {
        phase <- paste0(stage$type, " ", sub_stage_name)
        opt <- life_cycle_hook(phase, "during", opt, par, fg, iter)
      }

      list(opt = opt)
    },
    after_stage = function(opt, stage, par, fg, iter) {
      for (sub_stage_name in c("direction", "step_size")) {
        phase <- paste0(stage$type, " ", sub_stage_name)
        opt <- life_cycle_hook(phase, "after", opt, par, fg, iter)
      }
      stage$result <- stage$direction$value * stage$step_size$value
      list(stage = stage)
    },
    counts = make_counts()
  )

  if (!is.null(depends)) {
    stage$depends <- depends
  }

  if (!is.null(stage$init)) {
    attr(stage$init, 'event') <- paste0('init ', type)
    attr(stage$init, 'name') <- 'handler'
  }
  if (!is.null(stage$calculate)) {
    attr(stage$calculate, 'event') <- paste0('during ', type)
    attr(stage$calculate, 'name') <- 'handler'
  }
  if (!is.null(stage$after_stage)) {
    attr(stage$after_stage, 'event') <- paste0('after ', type)
    attr(stage$after_stage, 'name') <- 'handler'
  }
  if (!is.null(stage$after_step)) {
    attr(stage$after_step, 'event') <- 'after step'
    attr(stage$after_step, 'name') <- paste0(type, ' after step')
  }

  res <- list()
  res[[type]] <- stage
  res
}

# Creates a sub stage: a direction or a step size
make_sub_stage <- function(sub_stage, type) {
  sub_stage$type <- type
  if (!is.null(sub_stage$init)) {
    attr(sub_stage$init, 'event') <- paste0('init ', sub_stage$type)
    attr(sub_stage$init, 'name') <- 'handler'
  }
  if (!is.null(sub_stage$calculate)) {
    attr(sub_stage$calculate, 'event') <- paste0('during ', sub_stage$type)
    attr(sub_stage$calculate, 'name') <- 'handler'
  }
  if (!is.null(sub_stage$after_step)) {
    attr(sub_stage$after_step, 'event') <- 'after step'
    attr(sub_stage$after_step, 'name') <-  paste0(sub_stage$type, ' after step')
  }
  sub_stage
}

# Creates a gradient_descent stage
gradient_stage <- function(direction, step_size) {
  make_stage(type = "gradient_descent", direction, step_size,
             depends = c('gradient'))
}

# Creates a momentum stage
momentum_stage <- function(direction = momentum_direction(normalize = FALSE),
                           step_size) {
  make_stage(type = "momentum", direction, step_size)
}

# Creates a momentum "correction" stage. If linear weighting is asked for, then
# mu * the gradient direction is substracted from the result.
momentum_correction_stage <- function(
  direction = momentum_correction_direction(),
  step_size = momentum_correction_step()) {
  make_stage(type = "momentum_correction", direction, step_size)
}

# Creates stages from a passed list. Should contain lists created from calling
# a specific stage function like momentum_stage or gradient_stage
make_stages <- function(...) {
  stages <- list()
  varargs <- list(...)
  for (arg in varargs) {
    for (i in names(arg)) {
      stages[[i]] <- arg[[i]]
    }
  }
  stages
}

# Add a stage to the end of an optimizer stage list
append_stage <- function(opt, stage) {
  opt$stages <- c(opt$stages, stage)
  opt
}

# Add a stage to the beginning of an optimizer stage list
prepend_stage <- function(opt, stage) {
  opt$stages <- c(stage, opt$stages)
  opt
}

# Initialize a list to store the number of times the function and gradient
# is called.
make_counts <- function() {
  list(
    fn = 0,
    gr = 0
  )
}

# Function / Gradient ----------------------------------------------------------------

# Uncached function evaluation for arbitrary values of par
calc_fn <- function(opt, par, fn) {
  opt$fn <- fn(par)
  opt$counts$fn <- opt$counts$fn + 1
  opt
}

# Cached function evaluation for par value after finding a step size
# (possibly re-usable)
calc_fn_new <- function(opt, par, fn, iter) {
  if (is.null(opt$cache$fn_new_iter) || opt$cache$fn_new_iter != iter) {
    opt <- set_fn_new(opt, fn(par), iter)
    opt$counts$fn <- opt$counts$fn + 1
  }
  opt
}

# Store val as fn_new for the specified iteration
set_fn_new <- function(opt, val, iter) {
  opt$cache$fn_new <- val
  opt$cache$fn_new_iter <- iter
  opt
}

# Cached function evaluation for par at starting point
# (possibly re-usable)
calc_fn_curr <- function(opt, par, fn, iter) {
  if (is.null(opt$cache$fn_curr_iter) || opt$cache$fn_curr_iter != iter) {
    opt <- set_fn_curr(opt, fn(par), iter)
    opt$counts$fn <- opt$counts$fn + 1
  }
  opt
}

# Store val as fn_curr for the specified iteration
set_fn_curr <- function(opt, val, iter) {
  opt$cache$fn_curr <- val
  opt$cache$fn_curr_iter <- iter
  opt
}

# Cached gradient evaluation for par value at start of iteration
# (possibly re-usable)
calc_gr_curr <- function(opt, par, gr, iter) {
  if (is.null(opt$cache$gr_curr_iter) || opt$cache$gr_curr_iter != iter) {
    opt <- set_gr_curr(opt, gr(par), iter)
    opt$counts$gr <- opt$counts$gr + 1
  }
  opt
}

# Store val as gr_curr for the specified iteration
set_gr_curr <- function(opt, val, iter) {
  opt$cache$gr_curr <- val
  opt$cache$gr_curr_iter <- iter
  opt
}

# Uncached gradient evaluation for arbitrary values of par
calc_gr <- function(opt, par, gr) {
  opt$gr <- gr(par)
  opt$counts$gr <- opt$counts$gr + 1
  opt
}

# Predicates --------------------------------------------------------------

# Does the optimizer only have one stage (e.g. a gradient-only approach like
# BFGS)
is_single_stage <- function(opt) {
  length(opt$stages) == 1
}

# Is stage the first stage in the optimizers list of stages
is_first_stage <- function(opt, stage) {
  stage$type == opt$stages[[1]]$type
}

# Is stage the last stage in the optimizers list of stages
is_last_stage <- function(opt, stage) {
  stage$type == opt$stages[[length(opt$stages)]]$type
}

# Is the first stage of optimization gradient descent
# (i.e. not nesterov momentum)
grad_is_first_stage <- function(opt) {
  is_first_stage(opt, opt$stages[["gradient_descent"]])
}

# Has fn_new already been calculated for the specified iteration
has_fn_new <- function(opt, iter) {
  (!is.null(opt$cache$fn_new)
   && !is.null(opt$cache$fn_new_iter)
   && opt$cache$fn_new_iter == iter)
}

# Has fn_curr already been calculated for the specified iteration
has_fn_curr <- function(opt, iter) {
  (!is.null(opt$cache$fn_curr)
   && !is.null(opt$cache$fn_curr_iter)
   && opt$cache$fn_curr_iter == iter)
}

# Has gr_curr already been calculated for the specified iteration
has_gr_curr <- function(opt, iter) {
  (!is.null(opt$cache$gr_curr)
   && !is.null(opt$cache$gr_curr_iter)
   && opt$cache$gr_curr_iter == iter)
}
jlmelville/mizer documentation built on Sept. 23, 2018, 10:50 p.m.