
condor Vignette

September 28, 2015

1 Introduction

COmplex Network Description Of Regulators (CONDOR) implements methods for clustering bipartite networks and
estimating the contribution of each node to its community’s modularity. For an application of this method to identify
diesease-associated single nucleotide polymorphisms, see http://arxiv.org/abs/1509.02816.

2 Implementing the Bipartite Modularity Maximization

The code in condor.modularity.max is an implementation of the method described in Michael Barber’s paper
Modularity and community detection in bipartite networks (Phys. Rev. E 76, 066102 (2007)). A few
general comments:

• Maximizing bipartite modularity is an NP-hard problem

• This method is heuristic and can depend on initial assignments of the nodes to communities

• For the implementation in condor.cluster, I use a non-bipartite community detection method from the igraph
package to use as initial assignments of nodes to communities, which are then used in condor.modularity.max.

• Community structure is designed to cluster networks that form a giant connected component. All of the analysis
in this package uses the giant connected component.

3 Workflow

> library(condor)

> library(igraph)

condor works with an edgelist (elist in the code below) as its input.

> r = c(1,1,1,2,2,2,3,3,3,4,4);

> b = c(1,2,3,1,2,4,2,3,4,3,4);

> reds <- c("Alice","Sue","Janine","Mary")

> blues <- c("Bob","John","Ed","Hank")

> elist <- data.frame(red=reds[r], blue=blues[b])

In elist, notice all nodes of the same type–women and men in this case–appear in the same column together. This
is a requirement. create.condor.object will throw an error if a node appears in both columns.

> condor.object <- create.condor.object(elist)

A condor.object is just a list. You can look at the different items using names

> names(condor.object)

[1] "G" "edges" "Qcoms" "modularity" "red.memb" "blue.memb" "qscores"

condor.cluster will cluster the nodes and produce the overall modularity along with two community membership
data.frames:

1

http://arxiv.org/abs/1509.02816

> condor.object <- condor.cluster(condor.object)

[1] "modularity of projected graph 0.247933884297521"

[1] "making new comm"

[1] "Q = 0.165289256198347"

[1] "Q = 0.231404958677686"

[1] "Q = 0.231404958677686"

> print(condor.object$red.memb)

red.names com

1 Alice 2

2 Janine 1

3 Mary 1

4 Sue 2

> print(condor.object$blue.memb)

blue.names com

1 Bob 2

2 Ed 1

3 Hank 1

4 John 2

Nodes in first community are Alice, John, Bob, Sue, nodes in second community are Ed, Janine, Hank, Mary based
on the modularity maximization. Here’s a picture:

> gtoy = graph.edgelist(as.matrix(elist),directed=FALSE)

> set.graph.attribute(gtoy, "layout", layout.kamada.kawai(gtoy))

IGRAPH UN-- 8 11 --

+ attr: layout (g/n), name (v/c)

+ edges (vertex names):

[1] Alice--Bob Alice--John Alice--Ed Bob --Sue John --Sue Sue --Hank John --Janine

[8] Ed --Janine Hank --Janine Ed --Mary Hank --Mary

> V(gtoy)[c(reds,blues)]$color <- c(rep("red",4),rep("blue",4))

> plot(gtoy,vertex.label.dist=2)

2

●

●
●

●

●
●

●
●

Alice

Bob

John

Ed

Sue

Hank

Janine
Mary

To get each node’s modularity contribution (as a fraction of the community’s modularity), run

> condor.object <- condor.qscore(condor.object)

If you have a subset of nodes that you think are more likely to lie at the cores of your communities, you can test this
using condor.core.enrich:

> q_women <- condor.object$qscores$red.qscore

> core_stats <- condor.core.enrich(test_nodes=c("Alice","Mary"),

+ q=q_women,perm=TRUE,plot.hist=TRUE)

3

0 1 2 3 4

0
10

0
20

0
30

0
40

0
50

0
60

0

●

Wilcoxon Test Score

C
ou

nt
s

Perm. P−value = 0.845

0.0 0.4 0.8

0
20

0
40

0
60

0
80

0

●

KS Test Score

C
ou

nt
s

Perm. P−value = 1

condor also works on weighted bipartite networks. The package comes with a quantitative pollination network
data set (Small 1976) taken from the NCEAS interaction webs data base, containing interactions between 13 plants
and 34 pollinators.

> data(small1976)

> condor.object <- create.condor.object(small1976)

> condor.object <- condor.cluster(condor.object, project=F)

[1] "modularity of projected graph 0.525346928655047"

[1] "Q = 0.52666696475026"

[1] "Q = 0.52666696475026"

> condor.plot.heatmap(condor.object)

4

1 2 3 3 4 4 5 6 7 7 7 8 8

blues
re

ds

0 40 80

Value

Color Key

If you have questions, contact John Platig at jplatig@jimmy.harvard.edu

5

mailto:jplatig@jimmy.harvard.edu

	Introduction
	Implementing the Bipartite Modularity Maximization
	Workflow

