Practical 3 Solutions

Jumping Rivers

Predictive Analytics: practical 3

The 0J data set

The 0J data set from the ISLR package contains information on which of two brands of orange juice customers
purchased® and can be loaded using

data(0J, package = "ISLR")

After loading the caret and jrPred package
library("caret")
library("jrPred")

make an initial examination of the relationships between each of the predictors and the response?

par (mfrow = c(4, 5), mar = c(4, 0.5, 0.5, 0.5))
plot(Purchase ~ ., data = 0J)

Initial model building using logistic regression

e To begin, create a logistic regression model that takes into consideration the prices of the two brands of
orange juice, PriceCH and PriceMM. Hint: Use the train function, with method = 'glm'. Look at the
help page for the data set to understand what these variables represent.

ml = train(Purchase ~ PriceCH + PriceMM,
data = 0J, method = "glm")

e What proportion of purchases does this model get right?
getTrainPerf (m1)

TrainAccuracy TrainKappa method
##H 1 0.6199668 0.07931146 glm

e How does this compare to if we used no model?

with no model we essentially predict according to
proportion of observations in data

work out proportions

probs = table(0J$Purchase)/nrow(0J)

sample using proportions

preds = sample(levels(0J$Purchase), prob = probs)
work out correct proportion

mean(preds != 0J$Purchase)

[1] 0.4990654

IThe response variable is Purchase.
2Use the plot function with a model formula or the pairs function.

(9]

- w

N

N] o m

- *

o wile 0 1
2 .------"'-
2 o -'Flllh'---'-
o «~ | @ L L
E (o)) .----"'-'-----

‘_i] -----------u---

— |

N~

- | ®

| | | | |
1.7 1.8 1.9 2.0 2.1

Price CH

Figure 1: Examining the decision boundary for orange juice brand purchases by price.

e Use your model to predict if a customer will buy CH or MM if the price of CH and MM is 2.3 and 2.4
respectively

predict(ml, newdata = data.frame(PriceCH = 2.3, PriceMM = 2.4))

[1] CH
Levels: CH MM

Visualising the boundary

The jrPred package contains following code produces a plot of the decision boundary as seen in figure 1.

boundary_plot(ml,0J$PriceCH, 0J$PriceMM, 0J$Purchase,
xlab="Price CH", ylab="Price MM")

Run the boundary code above, and make sure you get a similar plot.

o What happens if we add an interaction term? How does the boundary change?

We now have a curved decision boundary.
There are two regions of where we would predict MM, bottom left, and a tiny one up in the top right.

e Try adding polynomial terms.

Using all of the predictors

o Instead of just using 2 predictors we want to use all of them. However, we have a few problems to
tackle first. A few of our predictors are linear combinations of the others. This leads to what is called

rank-deficiency problems. For instance, if you run the following model you’ll realise there are a few
NAs.

mlM = train(Purchase ~ ., data = 0J, method = "glm")

Take the predictor PriceDiff. It is impossible to estimate it’s coefficient as it is a linear combination of
PriceCH and PriceMM i.e. PriceDiff = PriceCH - PriceMM. In this particularly data set, there are quite
a few linear combinations. We can find them using the findLinearCombos () and model.matrix() functions

remove = findLinearCombos(model.matrix(Purchase ~ ., data = 0J))

The output list has a component called remove suggesting which variables should be removed to get rid of
linear combinations

(badvar = colnames(0J) [remove$remove])

[1] "SalePriceMM" "SalePriceCH" "PriceDiff" "ListPriceDiff"
[5] "STORE"

We can then remove these variable from the data

0Jsub = 0J[, -remove$removel]

e Use the new 0Jsub data set to model Purchase using all of the predictors. How accurate is the model?

mLM = train(Purchase~., data = 0Jsub, method = "glm")
getTrainPerf (mLM)

TrainAccuracy TrainKappa method
1 0.8245237 0.6267998 glm

o What are the values of sensitivity and specificity?

could use confusionMatrix
(cmLM = confusionMatrix(predict(mLM,0Jsub) ,0Jsub$Purchase))

Confusion Matrix and Statistics

##

Reference

Prediction CH MM

#i# CH 577 100

MM 76 317

##

Accuracy : 0.8355
95% CI : (0.8119, 0.8572)
No Information Rate : 0.6103
#it P-Value [Acc > NIR] : < 2e-16
##

Kappa : 0.6506
Mcnemar's Test P-Value : 0.08297
##

Sensitivity : 0.8836
Specificity : 0.7602
Pos Pred Value : 0.8523
Neg Pred Value : 0.8066
Prevalence : 0.6103
Detection Rate : 0.5393
Detection Prevalence : 0.6327
#i# Balanced Accuracy : 0.8219
##

'Positive' Class : CH

##

or
sensitivity(predict (mLM,0Jsub) ,0Jsub$Purchase)

[1] 0.8836141
specificity(predict (mLM,0Jsub) ,0Jsub$Purchase)

[1] 0.7601918

e What does this mean?

#The model ts fairly good at picking up both positive events, person buys CH, and negative events, MM.

K nearest neigbours

o Try fitting models using the K nearest neighbours algorithm. To begin with, just have two covariates
and use the boundary_plot function to visualise the results.

mKNN = train(Purchase~., data = 0Jsub, method = "knn")

e How do they comparein accuracy, sensitivity and specificity?

cmKNN = confusionMatrix(predict (mKNN,0Jsub) ,0Jsub$Purchase)
(info data.frame(Model = c("logistic","knn"),
Accuracy = c(cmLM$overall ["Accuracy"],
cmKNN$overall["Accuracy"]),
Sensitivity = c(cmLM$byClass["Sensitivity"],
cmKNN$byClass["Sensitivity"]),
Specificity = c(cmLM$byClass["Specificity"],
cmKNN$byClass ["Specificity"])))

Model Accuracy Sensitivity Specificity
1 logistic 0.8355140 0.8836141 0.7601918
2 knn 0.8102804 0.8759571 0.7074341

e How does varying the number of nearest neighbours in a KNN affect the model fit?

Accuracy increases at first with knn before then getting worse after a peak walue of 9.
(mKNN2 = train(Purchase~., data = 0Jsub, method = "knn",
tuneGrid = data.frame(k = 1:30)))

k-Nearest Neighbors

##

1070 samples

12 predictors

2 classes: 'CH', 'MM'

##

No pre-processing

Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 1070, 1070, 1070, 1070, 1070, 1070,
Resampling results across tuning parameters:
##

k Accuracy Kappa

#i# 1 0.6888932 0.3468706
#i# 2 0.6800922 0.3272325
3 0.6918017 0.3510428
4 0.7020312 0.3715847

5 0.7107337 0.3887036
#i# 6 0.7102773 0.3872450
#i# 7 0.7178065 0.4016792
8 0.7089531 0.3827932
9 0.7108238 0.3840149
10 0.7108157 0.3840168
#i# 11 0.7091958 0.3791367
#i# 12 0.7048762 0.3689534
13 0.7044433 0.3678794
14 0.7015100 0.3614778
15 0.6965208 0.3497147
#i# 16 0.6934740 0.3430584
17 0.6930431 0.3407583
#i# 18 0.6921134 0.3383642
19 0.6893812 0.3312422
20 0.6874200 0.3276937
21 0.6835400 0.3192909
22 0.6774286 0.3069594
23 0.6754316 0.3005763
24 0.6744242 0.2984620
25 0.6747625 0.2979593
26 0.6721148 0.2934443
27 0.6705441 0.2881399
28 0.6695171 0.2862839
29 0.6712764 0.2901053
30 0.6691142 0.2860621
##

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was k = 7.

The KNN algorithm described in the notes can also be used for regression problems. In this case the predicted
response is the mean of the k nearest neighbours.

o Try fitting the KNN model for the regression problem in practical 1.

library (" jrPred")

data(FuelEconomy, package = "AppliedPredictiveModeling")
regkNN = train(FE~., data = cars2010, method = "knn")
reglM = train(FE~., data = cars2010, method = "1lm")
getTrainPerf (regkNN)

TrainRMSE TrainRsquared TrainMAE method
1 3.566514 0.7797649 2.478294 knn

getTrainPerf (reglM)

TrainRMSE TrainRsquared TrainMAE method
1 3.560894 0.7778129 2.459725 Im

e How does this compare to the linear regression models?

The KNN regression model %s not as good as the linear model, only just

Resampling methods

e Fit a KNN regression model to the cars2010 data set with FE as the response.

data(FuelEconomy, package = "AppliedPredictiveModeling")
mKNN = train(FE ~ ., method = "knn", data = cars2010)

« Estimate test error using 10-fold cross validation

set the train control object

tc10fold = trainControl(method = "cv", number = 10)

fit the model using this train control object

mKNN10 = train(FE~., method = "knn'", data = cars2010,
trControl = tc10fold)

getTrainPerf (mKNN10)

TrainRMSE TrainRsquared TrainMAE method
1 3.337362 0.8052194 2.314977 knn

e Again using 10 fold CV, estimate the performance of the k nearest neighbours algorithm for different
values of k.

mKNNcv10 = train(FE~., method = "knn", data = cars2010,
trControl = tcl0fold, tuneGrid = data.frame(k= 2:20))

¢ Which model is chosen as the best?

mKNNcv10$bestTune

k
1 2

e Create new trainControl objects to specify the use of 5 fold and 15 fold cross validation to estimate
test RMSE.

tcbfold = trainControl(method = "cv'", number = 5)
tc15fold = trainControl(method = "cv'", number = 15)

e Go through the same training procedure attempting to find the best KNN model.

mKNNcv5 = train(FE~., data = cars2010, method = "knn",
trControl = tcbfold, tuneGrid = data.frame(k = 2:20))

mKNNcv15 = train(FE~., data = cars2010, method = "knn",
trControl = tcl5fold, tuneGrid = data.frame(k = 2:20))
mKNNcv5$bestTune

k
1 2

mKNNcv15$bestTune

k
1 2

An example with more than two classes

The Glass data set in the mlbench package is a data frame containing examples of the chemical analysis of 7
different types of glass. The goal is to be able to predict which category glass falls into based on the values of
the 9 predictors.

data(Glass, package = "mlbench")

A logistic regression model is typically not suitable for more than 2 classes, so try fitting a k nearest neighbour
model. Use k-fold cross validation is you want to. What proportion of predictions does your model get
correct?

tc = trainControl(method = "cv", number = 10)
model = train(Type ~ ., data = Glass, trControl = tc, method = "knn")
getTrainPerf (model)

TrainAccuracy TrainKappa method
1 0.6745337 0.5483347 knn

	Predictive Analytics: practical 3
	The OJ data set
	Initial model building using logistic regression
	Visualising the boundary
	Using all of the predictors
	K nearest neigbours
	Resampling methods
	An example with more than two classes

