Practical 3 Solutions

Jumping Rivers

Predictive Analytics: practical 3

The 0J data set

The 0J data set from the ISLR package contains information on which of two brands of orange juice customers
purchased® and can be loaded using

data(0J, package = "ISLR")

After loading the caret and jrPred package
library("caret")
library("jrPred")

make an initial examination of the relationships between each of the predictors and the response?

par (mfrow = c(4, 5), mar = c(4, 0.5, 0.5, 0.5))
plot(Purchase ~ ., data = 0J)

Initial model building using logistic regression

e To begin, create a logistic regression model that takes into consideration the prices of the two brands of
orange juice, PriceCH and PriceMM. Hint: Use the train function, with method = 'glm'. Look at the
help page for the data set to understand what these variables represent.

ml = train(Purchase ~ PriceCH + PriceMM,
data = 0J, method = "glm")

e What proportion of purchases does this model get right?
getTrainPerf (m1)

##  TrainAccuracy TrainKappa method
##H 1 0.6199668 0.07931146 glm

e How does this compare to if we used no model?

# with no model we essentially predict according to
# proportion of observations in data

# work out proportions

probs = table(0J$Purchase)/nrow(0J)

# sample using proportions

preds = sample(levels(0J$Purchase), prob = probs)
# work out correct proportion

mean(preds != 0J$Purchase)

## [1] 0.4990654

IThe response variable is Purchase.
2Use the plot function with a model formula or the pairs function.



(9]

- w

N

N ] o m

- *

o wile 0 1
2 .------"'-
2 o -'Flllh'---'-
o «~ | @ L L
E (o)) .----"'-'-----

‘_i ] -----------u---

— |

N~

- | ®

| | | | |
1.7 1.8 1.9 2.0 2.1

Price CH

Figure 1: Examining the decision boundary for orange juice brand purchases by price.

e Use your model to predict if a customer will buy CH or MM if the price of CH and MM is 2.3 and 2.4
respectively

predict(ml, newdata = data.frame(PriceCH = 2.3, PriceMM = 2.4))

## [1] CH
## Levels: CH MM

Visualising the boundary

The jrPred package contains following code produces a plot of the decision boundary as seen in figure 1.

boundary_plot(ml,0J$PriceCH, 0J$PriceMM, 0J$Purchase,
xlab="Price CH", ylab="Price MM")

Run the boundary code above, and make sure you get a similar plot.

o What happens if we add an interaction term? How does the boundary change?

# We now have a curved decision boundary.
# There are two regions of where we would predict MM, bottom left, and a tiny one up in the top right.

e Try adding polynomial terms.

Using all of the predictors

o Instead of just using 2 predictors we want to use all of them. However, we have a few problems to
tackle first. A few of our predictors are linear combinations of the others. This leads to what is called

rank-deficiency problems. For instance, if you run the following model you’ll realise there are a few
NAs.



mlM = train(Purchase ~ ., data = 0J, method = "glm")

Take the predictor PriceDiff. It is impossible to estimate it’s coefficient as it is a linear combination of
PriceCH and PriceMM i.e. PriceDiff = PriceCH - PriceMM. In this particularly data set, there are quite
a few linear combinations. We can find them using the findLinearCombos () and model.matrix() functions

remove = findLinearCombos(model.matrix(Purchase ~ ., data = 0J))

The output list has a component called remove suggesting which variables should be removed to get rid of
linear combinations

(badvar = colnames(0J) [remove$remove])

## [1] "SalePriceMM" "SalePriceCH" "PriceDiff" "ListPriceDiff"
## [5] "STORE"

We can then remove these variable from the data

0Jsub = 0J[, -remove$removel]

e Use the new 0Jsub data set to model Purchase using all of the predictors. How accurate is the model?

mLM = train(Purchase~., data = 0Jsub, method = "glm")
getTrainPerf (mLM)

##  TrainAccuracy TrainKappa method
## 1 0.8245237 0.6267998 glm

o What are the values of sensitivity and specificity?

## could use confusionMatrix
(cmLM = confusionMatrix(predict(mLM,0Jsub) ,0Jsub$Purchase))

## Confusion Matrix and Statistics

##

## Reference

## Prediction CH MM

#i# CH 577 100

## MM 76 317

##

## Accuracy : 0.8355
## 95% CI : (0.8119, 0.8572)
## No Information Rate : 0.6103
#it P-Value [Acc > NIR] : < 2e-16
##

## Kappa : 0.6506
## Mcnemar's Test P-Value : 0.08297
##

## Sensitivity : 0.8836
## Specificity : 0.7602
## Pos Pred Value : 0.8523
## Neg Pred Value : 0.8066
## Prevalence : 0.6103
## Detection Rate : 0.5393
## Detection Prevalence : 0.6327
#i# Balanced Accuracy : 0.8219
##

## 'Positive' Class : CH

##



# or
sensitivity(predict (mLM,0Jsub) ,0Jsub$Purchase)

## [1] 0.8836141
specificity(predict (mLM,0Jsub) ,0Jsub$Purchase)

## [1] 0.7601918

e What does this mean?

#The model ts fairly good at picking up both positive events, person buys CH, and negative events, MM.

K nearest neigbours

o Try fitting models using the K nearest neighbours algorithm. To begin with, just have two covariates
and use the boundary_plot function to visualise the results.

mKNN = train(Purchase~., data = 0Jsub, method = "knn")

e How do they comparein accuracy, sensitivity and specificity?

cmKNN = confusionMatrix(predict (mKNN,0Jsub) ,0Jsub$Purchase)
(info data.frame(Model = c("logistic","knn"),
Accuracy = c(cmLM$overall ["Accuracy"],
cmKNN$overall["Accuracy"]),
Sensitivity = c(cmLM$byClass["Sensitivity"],
cmKNN$byClass["Sensitivity"]),
Specificity = c(cmLM$byClass["Specificity"],
cmKNN$byClass ["Specificity"])))

## Model Accuracy Sensitivity Specificity
## 1 logistic 0.8355140 0.8836141 0.7601918
## 2 knn 0.8102804 0.8759571  0.7074341

e How does varying the number of nearest neighbours in a KNN affect the model fit?

# Accuracy increases at first with knn before then getting worse after a peak walue of 9.
(mKNN2 = train(Purchase~., data = 0Jsub, method = "knn",
tuneGrid = data.frame(k = 1:30)))

## k-Nearest Neighbors

##

## 1070 samples

## 12 predictors

## 2 classes: 'CH', 'MM'

##

## No pre-processing

## Resampling: Bootstrapped (25 reps)

## Summary of sample sizes: 1070, 1070, 1070, 1070, 1070, 1070,
## Resampling results across tuning parameters:
##

## k  Accuracy Kappa

#i# 1 0.6888932 0.3468706
#i# 2 0.6800922 0.3272325
## 3 0.6918017 0.3510428
## 4 0.7020312 0.3715847



## 5 0.7107337 0.3887036
#i# 6 0.7102773 0.3872450
#i# 7 0.7178065 0.4016792
## 8 0.7089531 0.3827932
## 9 0.7108238 0.3840149
## 10 0.7108157 0.3840168
#i# 11 0.7091958 0.3791367
#i# 12 0.7048762 0.3689534
## 13 0.7044433 0.3678794
## 14 0.7015100 0.3614778
## 15 0.6965208 0.3497147
#i# 16 0.6934740 0.3430584
## 17 0.6930431 0.3407583
#i# 18 0.6921134 0.3383642
## 19 0.6893812 0.3312422
## 20 0.6874200 0.3276937
## 21 0.6835400 0.3192909
## 22 0.6774286 0.3069594
## 23 0.6754316 0.3005763
## 24 0.6744242 0.2984620
## 25 0.6747625 0.2979593
## 26 0.6721148 0.2934443
## 27 0.6705441 0.2881399
## 28 0.6695171 0.2862839
## 29 0.6712764 0.2901053
## 30 0.6691142 0.2860621
##

## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was k = 7.

The KNN algorithm described in the notes can also be used for regression problems. In this case the predicted
response is the mean of the k nearest neighbours.

o Try fitting the KNN model for the regression problem in practical 1.

library (" jrPred")

data(FuelEconomy, package = "AppliedPredictiveModeling")
regkNN = train(FE~., data = cars2010, method = "knn")
reglM = train(FE~., data = cars2010, method = "1lm")
getTrainPerf (regkNN)

##  TrainRMSE TrainRsquared TrainMAE method
## 1 3.566514 0.7797649 2.478294 knn

getTrainPerf (reglM)

##  TrainRMSE TrainRsquared TrainMAE method
## 1 3.560894 0.7778129 2.459725 Im

e How does this compare to the linear regression models?

# The KNN regression model %s not as good as the linear model, only just

Resampling methods

e Fit a KNN regression model to the cars2010 data set with FE as the response.



data(FuelEconomy, package = "AppliedPredictiveModeling")
mKNN = train(FE ~ ., method = "knn", data = cars2010)

« Estimate test error using 10-fold cross validation

# set the train control object

tc10fold = trainControl(method = "cv", number = 10)

# fit the model using this train control object

mKNN10 = train(FE~., method = "knn'", data = cars2010,
trControl = tc10fold)

getTrainPerf (mKNN10)

##  TrainRMSE TrainRsquared TrainMAE method
## 1 3.337362 0.8052194 2.314977 knn

e Again using 10 fold CV, estimate the performance of the k nearest neighbours algorithm for different
values of k.

mKNNcv10 = train(FE~., method = "knn", data = cars2010,
trControl = tcl0fold, tuneGrid = data.frame(k= 2:20))

¢ Which model is chosen as the best?

mKNNcv10$bestTune

## k
## 1 2

e Create new trainControl objects to specify the use of 5 fold and 15 fold cross validation to estimate
test RMSE.

tcbfold = trainControl(method = "cv'", number = 5)
tc15fold = trainControl(method = "cv'", number = 15)

e Go through the same training procedure attempting to find the best KNN model.

mKNNcv5 = train(FE~., data = cars2010, method = "knn",
trControl = tcbfold, tuneGrid = data.frame(k = 2:20))

mKNNcv15 = train(FE~., data = cars2010, method = "knn",
trControl = tcl5fold, tuneGrid = data.frame(k = 2:20))
mKNNcv5$bestTune

## k
## 1 2

mKNNcv15$bestTune

## k
## 1 2

An example with more than two classes

The Glass data set in the mlbench package is a data frame containing examples of the chemical analysis of 7
different types of glass. The goal is to be able to predict which category glass falls into based on the values of
the 9 predictors.



data(Glass, package = "mlbench")

A logistic regression model is typically not suitable for more than 2 classes, so try fitting a k nearest neighbour
model. Use k-fold cross validation is you want to. What proportion of predictions does your model get
correct?

tc = trainControl(method = "cv", number = 10)
model = train(Type ~ ., data = Glass, trControl = tc, method = "knn")
getTrainPerf (model)

##  TrainAccuracy TrainKappa method
## 1 0.6745337 0.5483347 knn
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