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1 Introduction

MEMGENE is a tool for spatial pattern detection in genetic distance data. It uses a mul-
tivariate regression approach and Moran’s Eigenvector Maps (MEM) to identify the spatial
component of genetic variation. MEMGENE variables are the output, and can be used in
visualizations or in subsequent inference about ecological or movement processes that underly
genetic pattern. Please see the publication associated with the MEMGENE package (Galpern
et al., 2014) for more information.

Three tutorials are presented here. The first shows a MEMGENE analysis of a simulated
data set produced for the publication associated with the MEMGENE package (Galpern et
al., 2014) and a second demonstrates an analysis for field-collected caribou data contained in
the same paper. The third tutorial demonstrates how to use MEMGENE in the context of
landscape genetic analysis also using simulated data.
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2 Tutorial: Spatial genetic patterns in simulated data

This tutorial demonstrates how to use MEMGENE when the primary objective is to identify
spatial genetic patterns. It is possible to reproduce these examples directly in R. The tutorial
focuses on the radial data set, which is also provided with the package.

2.1 The data set

A full description of how the radial spatial genetic data were simulated is available in the pub-
lication associated with this package (Galpern et al., 2014). Briefly, we simulated the moving
and mating of 1000 individuals over 300 non-overlapping generations. Movement across the
arms of the radial structure (see figure below) was less likely than within the three regions of
the landscape, due to landscape resistance to movement imposed on the simulated individ-
uals. This makes the radial structure into a semi-permeable barrier, reducing dispersal and
therefore gene flow. Given a sufficient number of generations for genetic drift under reduced
gene flow, we expect a spatial genetic pattern that reflects the landscape resistance pattern
in this Figure (below).

The data set provided with the package (radial.csv installed in the extdata folder) repre-
sents a spatially stratified sampling of 200 individuals at generation 300 of this simulation.
It includes 200 rows, one for each individual, two columns giving coordinates at which the
individual was ”sampled”, and 30 paired columns giving the alleles at 15 codominant loci.
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Above: The figure shows the radial resistance surface used to generate the spatial genetic
data set used in this tutorial.
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2.2 MEMGENE analysis

Step 1 Produce a genetic distance matrix

MEMGENE requires a genetic distance matrix giving the pairwise genetic distances
among individual genotypes. Any genetic distance metric can be used. In principle the
method will also work with a population genetic distance matrix (e.g. pairwise Fst).

In this first step we find the genetic distance matrix using the proportion of shared
alleles among individuals (Bowcock et al., 1994) as the metric. We use a convenience
function included in the package to produce this that wraps functions in the adegenet
package (Jombart, 2008).

## Load the radial genetic data

radialData <- read.csv(system.file("extdata/radial.csv",
package="memgene"))

## Create objects for positional information and genotypes

radialXY <- radialData[ ,1:2]
radialGen <- radialData[, 3:ncol(radialData)]

## Produce a proportion of shared alleles genetic distance matrix

## using the convenience wrapper function provided with the package

radialDM <- codomToPropShared(radialGen)

Step 2 Extract MEMGENE variables

In this second step we extract the MEMGENE variables, using the typical interface to
the MEMGENE package (the mgQuick function). The analysis framework is discussed
in detail in the publication associated with this package.

The mgQuick function does the following: (1) Finds the MEM eigenvectors given the
sampling locations of the individuals (mgMEM function); (2) Uses these eigenvectors to
identify significant spatial genetic patterns (mgForward and mgRDA functions); (3) Re-
turns MEMGENE variables that describe these significant patterns on a reduced set of
axes (mgRDA function). For additional detail on these functions, and for more control
over the MEMGENE analysis see the R help files.

## Run the MEMGENE analysis

## May take several minutes

if (!exists("radialAnalysis"))
radialAnalysis <- mgQuick(radialDM, radialXY)

Step 3 Visualize MEMGENE variables

The MEMGENE variables represent orthonormal patterns of significant spatial genetic
variation, and are ordered in terms of the amount of variation they explain from most
to least. Typically, much of the variation is summarized in the first two variables, so it
can often be convenient to visualize these two initially.
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## Visualize the first two MEMGENE variables

## by providing only the first two columns of the memgene matrix

mgMap(radialXY, radialAnalysis$memgene[, 1:2])

However, it is often more interesting to visualize the MEMGENE variables superimposed
over some map or other. In the figure below we superimpose the first MEMGENE
variable (MEMGENE1) over the resistance surface used to create the spatial genetic
data. This can be done using the add.plot=TRUE parameter.

library(raster)
radialRas <- raster(system.file("extdata/radial.asc", package="memgene"))
plot(radialRas, legend=FALSE)
mgMap(radialXY, radialAnalysis$memgene[, 1], add.plot=TRUE, legend=TRUE)
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Above: The scores of individuals on the MEMGENE1 axis superimposed on the resis-
tance surface used to create the spatial genetic data. Circles of similar size and colour
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represent individuals with similar scores on this axis. Note how the pattern of spatial
genetic variation in MEMGENE1 (spatial genetic neighbourhoods) reflects the structure
of the landscape used to create it.

Although visualization may often be an end in itself, the MEMGENE variables can also
be used singly or in combination to test hypotheses about the creation of the spatial
genetic neighbourhoods they describe.
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3 Tutorial: Spatial genetic patterns in wildlife data

This tutorial demonstrates the use of MEMGENE to identify spatial genetic patterns in a
data set for boreal woodland caribou, a North American ungulate.

3.1 The data set

A full description of how these spatial genetic data were collected and genotyped can be found
in the publication associated with this package (Galpern et al., 2014). Briefly, these are geno-
types for 87 caribou sampled on both sides of the Mackenzie River (Northwest Territories,
Canada). The Mackenzie is a major North American river that varies between 1 and 4.5 km
through the study area. Caribou have occasionally been reported crossing the river.

Boreal woodland caribou are a threatened species under Canada’s Species at Risk Act. For
this reason the caribou data included with the package have obfuscated sampling locations
produced by reprojecting them in a way that maintains the Euclidean distance matrix among
the points, but is not easily assignable to a precise location on the Earth’s surface.

3.2 MEMGENE analysis

Step 1 Produce a genetic distance matrix

## Load the caribou genetic data

caribouData <- read.csv(system.file("extdata/caribou.csv",
package="memgene"))

## Create objects for positional information and genotypes

caribouXY <- caribouData[ ,1:2]
caribouGen <- caribouData[, 3:ncol(caribouData)]

## Produce a proportion of shared alleles genetic distance matrix

## using the convenience wrapper function provided with the package

caribouDM <- codomToPropShared(caribouGen)

Step 2 Extract MEMGENE variables

## Run the MEMGENE analysis

## May take several minutes

if (!exists("caribouAnalysis"))
caribouAnalysis <- mgQuick(caribouDM, caribouXY)

Step 3 Visualize MEMGENE variables

The results of the visualization of MEMGENE1 is shown in Figure below. This figure
also appears in the publication associated with this package, sumperimposed over a map
of the region.
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plot(caribouXY, type="n", xlab="", ylab="", axes=FALSE)
mgMap(caribouXY, caribouAnalysis$memgene[, 1], add.plot=TRUE,

legend=TRUE)
box()
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Above: The scores of individual caribou on the MEMGENE1 axis. The Mackenzie
River separates the white and black circles diagonally through the lower half of the map
(not shown). For the full presentation of these results see the publication associated
with this package.

Step 4 Additional interpretation

Finding the adjusted R-squared (i.e. the genetic variation explained by spatial pattern)
is just a matter of referencing the list element in the caribouAnalysis object as follows:

caribouAnalysis$RsqAdj
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## [1] 0.02906

Note that this low value should be interpreted not as an inadequacy of the regression to
explain variation, but rather that there is only a small proportion of all genetic variation
that can be attributed to spatial patterns; or more specifically, to the N-1 (where N is
the number of sampling locations) MEM spatial eigenfunctions that were extracted. It
is important to note, however, that adjustments to how the MEM eigenfunctions are
extracted have the potential to subtly change which spatial patterns are captured, as
well as increase R squared. Further work is required to explore the effects of these
modelling decisions.

Then determining the proportion of the this variation that is explained by each of the
MEMGENE variables is also straightforward:

## Find the proportional variation explained by each MEMGENE variable

caribouMEMGENEProp <- caribouAnalysis$sdev/sum(caribouAnalysis$sdev)

## Neatly print proportions for the first three MEMGENE variables

format(signif(caribouMEMGENEProp, 3)[1:3], scientific=FALSE)

## MEMGENE1 MEMGENE2 MEMGENE3
## "0.7220000000" "0.2780000000" "0.0000000153"

It is clear that there are only two distinctive patterns in these data, and the dominant
pattern is that created by the Mackenzie River (i.e. MEMGENE1)
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4 Tutorial: Landscape genetics using simulated data

This tutorial demonstrates the use of MEMGENE to explore a common research question
in landscape genetics. Given genetic samples collected from across a broad spatial extent
researchers may be interested in determining whether landscape or spatially-variable environ-
mental conditions have influenced organism dispersal and, by extension, gene flow. With a
sufficient number of generations (e.g. for genetic drift) and insufficient gene flow to homog-
enize genetic differences, evidence of reduced or biased dispersal may be read from spatial
patterns in neutral genetic markers (Segelbacher et al., 2010; Storfer et al., 2010).

A common approach to testing the influence of landscape features on gene flow has been to
create a landscape resistance surface; a hypothesis in the form of a map about the degree
to which geographical, ecological and anthropogenic features such as mountains, land cover
and roads may reduce dispersal and gene flow for an organism of interest. This resistance
surface is then used to predict genetic patterns observed among individuals or populations.
Typically the predictive performance is also compared to a null model, a Euclidean surface
where any differentiation among genetic samples across space is considered to be a function
of distance (known as isolation-by distance; IBD) (Wright, 1943). By contrast, isolation-by-
resistance (IBR) is inferred where effective distances (e.g. of least-cost paths among samples
on the resistances surface) better explain genetic patterns than the straight-line or Euclidean
distances implied by the null model.

Here we use MEMGENE to compare the predictive performance of Euclidean and resistance
surface hypotheses for genetic pattern. In previous tutorials MEM eigenvectors were extracted
from a truncated Euclidean distance matrix among sampling locations which provided a set of
spatial patterns. Note that truncation is necessary because a fully Euclidean matrix produces
only two eigenvectors (or spatial patterns) exactly representing the original variables. A
subset of these spatial patterns was then identified using forward selection and used for
visualization. In the following analysis, resistance surfaces are included by instead finding
the MEM eigenvectors from a truncated matrix containing least-cost path distances among
sampling locations. This produces a different set of spatial patterns to test using forward
selection. We can then compare the proportion of genetic variation explained by the selected
MEM eigenvectors from a Euclidean surface as well as resistance surface models. Using a
variation partitioning procedure we partition genetic variation among two sources of spatial
variation: (1) the selected eigenvectors from a given surface; and, (2) the spatial coordinates
of sampling.

4.1 Landscape genetic data sets

The radial data set was used where spatial genetic patterns were simulated to reflect resistance
created by three semi-permeable linear features (see first tutorial). Three different landscape
models are tested for these data: (1) A null Euclidean surface; (2) the true radial resistance
surface used to generate the data; and (3) a false river resistance surface. The three surfaces
are shown below.
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(Null model)

radial
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4.2 MEMGENE analysis of multiple landscape models

Step 1 Prepare landscape resistance models

First we assemble the two resistance surfaces we are going to test into a RasterStack
object (a set of rasters with identical extent, resolution and coordinate reference system).
These rasters represent the radial model (used to generate the genetic data) and the
river model (not used to generate the data).

resistanceMaps <- stack(
raster(system.file("extdata/radial.asc", package="memgene")),
raster(system.file("extdata/river.asc", package="memgene")))

Step 2 Prepare the genetic data

We next prepare the radial genetic data for analysis in the same way as we prepared
genetic data for previous tutorials. Again, we are using the proportion of shared alleles
among pairs of individuals (Bowcock et al., 1994) as the genetic distance metric, but
this is not a requirement of the analysis.

radialData <- read.csv(system.file("extdata/radial.csv",
package="memgene"))

radialGen <- radialData[, -c(1,2)]
radialXY <- radialData[, 1:2]
radialDM <- codomToPropShared(radialGen)
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Step 3 Compare three landscape models

Finally, we use the mgLandscape function to compare the proportion of spatial genetic
variation explained by each these two resistance surface models and a Euclidean model.
## Note permutations are set high for greater accuracy

## Reduce to 100 in each case for a faster run (note

## results may differ slightly because forward selection of

## spatial patterns differs)

if (!exists("compareThree")) {
compareThree <- mgLandscape(resistanceMaps,

radialDM, radialXY, euclid=TRUE,

forwardPerm=500, finalPerm=1000)

}

## Analyzing Euclidean surface (landscape model 1 of 3)

## Extracting Moran's eigenvectors from Euclidean distance matrix

## Forward selections of positive Moran's eigenvectors

## ----Selected: 1, 2, 3, 5, 6, 7, 8, 9, 13, 21

## Forward selections of negative Moran's eigenvectors

## ----Selected: None

## Partitioning spatial genetic variation

##

## Analyzing resistance surface (landscape model 2 of 3) [radial]

## Calculating least-cost path distance matrix

## Extracting Moran's eigenvectors from least-cost path distance matrix

## Forward selections of positive Moran's eigenvectors

## ----Selected: 1, 2, 3, 4, 6, 10, 13, 14, 44

## Forward selections of negative Moran's eigenvectors

## ----Selected: None

## Partitioning spatial genetic variation

##

## Analyzing resistance surface (landscape model 3 of 3) [river]

## Calculating least-cost path distance matrix

## Extracting Moran's eigenvectors from least-cost path distance matrix

## Forward selections of positive Moran's eigenvectors

## ----Selected: 3, 4, 5, 6, 9, 11, 13, 23

## Forward selections of negative Moran's eigenvectors

## ----Selected: None

## Partitioning spatial genetic variation
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Step 4 Interpretation

print(compareThree)

## mgLandscape Analysis
## model [abc] P[abc] [a] P[a] [c] P[c] [b] [d]
## Euclidean 0.135 0.001 0.0462 0.001 0.01017 0.001 0.0788 0.865
## radial 0.156 0.001 0.0672 0.001 0.00547 0.026 0.0835 0.844
## river 0.118 0.001 0.0291 0.001 0.05595 0.001 0.0330 0.882
##
## Interpretation:
## Proportion of variation in genetic distance that is... (RsqAdj)
## [abc] explained by spatial predictors
## [a] spatial and explained by selected patterns in the model
## [c] spatial and explained by coordinates not patterns in the model
## [b] spatial and confounded between the model and coordinates
## [d] residual and not explained by spatial predictors

There are several important results to interpret from the above table:

1. Comparing the [abc] fraction for all three models indicates that incorporating the
MEM eigenvectors derived from spatial patterns in the radial resistance surface
explains the highest proportion of spatial genetic variation.

2. In the radial case the [a] fraction is the highest and the [c] fraction is the lowest,
indicating that the majority of spatial genetic variation has been partitioned to
the selected MEM eigenvectors and not to the coordinates (which describe linear
sources of spatial genetic variation not described by the Morans eigenvectors).

3. By contrast, in the river model, the [c] fraction is higher than the [a] fraction
showing that the selected eigenvectors in this case are relatively poor at capturing
spatial genetic pattern, compared to the coordinates. In other words, the linear
pattern of genetic differentiation (i.e. coordinates) is more important than a non-
linear one (Morans eigenvectors).

4. The similar performance of the Euclidean and the radial model underlines the fact
that the radial resistance surface is highly correlated with the Euclidean surface
(i.e. individuals that fall within a given third of the landscape are expected to
differ as a function of Euclidean distance).

In summary, the radial resistance surface, the ”true” model that was used to generate
the simulated genetic data, uniquely explains the highest proportion of spatial genetic
pattern (i.e. in its [a] fraction). But because of its similarity to a Euclidean surface, it
is not easily distinguished from this latter model. This may imply that that a truncated
Euclidean distance matrix for which no a priori hypothesis is imposed is capable of
describing complex patterns closer to the true spatial constraints underlying genetic
variability in landscapes.
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