library(LaplacesDemon)
library(profvis)
source("R/NormalQuadraPoints.R")
source("R/LordWingersky.R")
library(mvtnorm)
######## BI-Factor Full Approach 2 ------------------------------------
# read item parameters from txt file
itemPara_BF <- read.table("TestData/SpanishLit_prm_A_BF.txt")[,c(7:11)]
# itemPara_BF <- read.table("TestData/SpanishLit_prm_B_BF.txt")[,c(7:11)]
# read conversion tables
convTable_A <- read.csv("TestData/conversion_table_Form A.csv")
convTable_A <- convTable_A[1:32, c("RawScore", "roundedSS")]
names(convTable_A) <- c("y","roundedSS")
convTable <- convTable_A
# convTable_B <- read.csv("TestData/conversion_table_Form B.csv")
# convTable_B <- convTable_B[1:32, c("RawScore", "roundedSS")]
# names(convTable_B) <- c("y","roundedSS")
# convTable <- convTable_B
strat <- c(13, 12, 6)
names(itemPara_BF) <- c("b", "ag","a1","a2", "a3") # ag is primary
itemPara_BF$ai <- c(itemPara_BF$a1[1:13], itemPara_BF$a2[14:25], itemPara_BF$a3[26:31])
# num of items
numOfItem <- nrow(itemPara_BF)
# num of quadratures
numOfQuad <- 11
# set nodes ranging from -4 to 4
nodes <- seq(-4, 4, length.out = numOfQuad)
nodesM <- as.matrix(expand.grid(nodes,nodes,nodes, nodes))
weightsUnwtd <- dmvnorm(nodesM, c(0,0,0,0), diag(4), log=FALSE) # 41^3
nodesM <- as.data.frame(nodesM)
nodesM$weightsWtd <- weightsUnwtd / sum(weightsUnwtd)
itemPara1 <- itemPara_BF[1:13,c("b", "ag", "ai")]
itemPara2 <- itemPara_BF[14:25,c("b", "ag", "ai")]
itemPara3 <- itemPara_BF[26:31,c("b", "ag", "ai")]
# itemPara <- itemPara1
FX_BF <- function(itemPara){
NormalQuadraPoints <- function(n){
# set nodes ranging from -4 to 4
nodes <- seq(-4, 4, length.out = n)
# unnormalized weights
weightsUnwtd <- sapply(nodes, FUN = function(x) dnorm(x))
# normalized weightes
weightsWtd <- weightsUnwtd / sum(weightsUnwtd)
# return nodes and normalized weights
return(list("nodes" = nodes, "weights" = weightsWtd))
}
# transform item parameters to the logistic metric
names(itemPara) <- c("b", "ag", "ai")
# num of items
numOfItem <- nrow(itemPara)
# num of quadratures
# numOfQuad <- numOfQuad^2
# weights and nodes
quadPoints <- expand.grid(NormalQuadraPoints(numOfQuad)$nodes, NormalQuadraPoints(numOfQuad)$nodes)
# quadPoints <- nodes
# replicate item parameter and theta
itemParaRep <-itemPara[rep(seq_len(numOfItem), each = numOfQuad^2),]
itemParaRep$thetag <- rep(quadPoints[,c(1)], each = 1, length.out = numOfQuad^2*numOfItem)
itemParaRep$thetai <- rep(quadPoints[,c(2)], each = 1, length.out = numOfQuad^2*numOfItem)
# calculate information by theta
itemParaRep <- within(itemParaRep, {
P = 0 + (1 - 0) / (1 + exp(-(ag*thetag + ai*thetai - b)))
Q = 1 - P
PQ = P * Q
# info = 1.702**2 * a**2 * P * Q
})
# order by theta
itemParaRep <- itemParaRep[order(itemParaRep$thetag,itemParaRep$thetai),]
# define matrix of marginal distribution of theta
fxTheta <- matrix(NA, nrow = numOfQuad^2, ncol = numOfItem + 1) # 41 num of quadratures, 41 num of raw sxores
# for loop to calculate fxTheta
for (i in 1:numOfQuad^2){
probs <- matrix(c(itemParaRep[(1 + numOfItem * (i - 1)):(numOfItem * i),]$P),
nrow = numOfItem, ncol = 1, byrow = FALSE)
fxTheta[i, ] <- LordWingersky(probs)$probability
}
# transform to data frame
fxTheta <- as.data.frame(fxTheta)
fxTheta
}
# fxtheta distribution
fxTheta1 <- FX_BF(itemPara1)
fxTheta2 <- FX_BF(itemPara2)
fxTheta3 <- FX_BF(itemPara3)
names(fxTheta1) <- c(0:strat[1])
names(fxTheta2) <- c(0:strat[2])
names(fxTheta3) <- c(0:strat[3])
# for loop
tau <- c()
errvar <- c()
fyDistMat <- matrix(NA,numOfQuad^4,32)
# SS
nodesMSS <- nodesM
tauSS <- c()
errvarSS <- c()
fySSDistMat <- matrix(NA,numOfQuad^4,32)
n <- 0
for (g in 1:numOfQuad){
for (k in 1:numOfQuad){
for (j in 1:numOfQuad){
for (i in 1:numOfQuad){
# index
n <- n+1
# i <- j <- k <- g <- 1 # test
# n <- 1 # test
# fx distribution
fx1 <- t(fxTheta1[11*(g-1)+i,])
fx2 <- t(fxTheta2[11*(g-1)+j,])
fx3 <- t(fxTheta3[11*(g-1)+k,])
xSum <- expand.grid(rownames(fx1), rownames(fx2), rownames(fx3))
names(xSum) <- c("x1", "x2", "x3")
fxSum <- expand.grid(fx1, fx2, fx3)
names(fxSum) <- c("fx1", "fx2", "fx3")
fxThetaSum <- cbind(fxSum, xSum)
fxThetaSum$x1 <- as.numeric(as.character(fxThetaSum$x1))
fxThetaSum$x2 <- as.numeric(as.character(fxThetaSum$x2))
fxThetaSum$x3 <- as.numeric(as.character(fxThetaSum$x3))
# fy distribution
fxThetaSum$y <- fxThetaSum$x1 + fxThetaSum$x2 + fxThetaSum$x3
fxThetaSum$wty <- fxThetaSum$fx1 * fxThetaSum$fx2 * fxThetaSum$fx3
fy <- fxThetaSum[,c("y", "wty")]
fyDist <- aggregate(fy$wty, by=list(Category=fy$y), FUN=sum)
names(fyDist) <- c("y", "wts")
# weighted mean of Obs Y (true y) and variance of Obs Y
weightedMean <- sum(fyDist$y * fyDist$wts)/sum(fyDist$wts)
varianceY <- sum(fyDist$wts * (fyDist$y - weightedMean)^2)
# save results
tau[n] <- weightedMean
errvar[n] <- varianceY
fyDistMat[n,] <- t(fyDist$wts)
# SS
fySSDist <- merge(fyDist, convTable, by = "y")
# weighted mean of Obs Y (true y) and variance of Obs Y
weightedMeanSS <- sum(fySSDist$roundedSS * fySSDist$wts)/sum(fySSDist$wts)
varianceYSS <- sum(fySSDist$wts * (fySSDist$roundedSS - weightedMeanSS)^2)
# store results
tauSS[n] <- weightedMeanSS
errvarSS[n] <- varianceYSS
fySSDistMat[n,] <- t(fySSDist$wts)
}
}
}
}
nodesM$tau <- tau
nodesM$errvar <- errvar
nodesM[,8:39] <- fyDistMat
#SS
nodesMSS$tauSS <- tauSS
nodesMSS$errvarSS <- errvarSS
nodesMSS[,8:39] <- fySSDistMat
# sum of error variance
varianceError <- sum(nodesM$weightsWtd * nodesM$errvar)
varianceErrorSS <- sum(nodesMSS$weightsWtd * nodesMSS$errvarSS)
# sum of observed score variance
fyThetaWeighted <- apply(nodesM[,8:(8 + numOfItem)], 2, function(x) x * nodesM[,"weightsWtd"])
fySSThetaWeighted <- apply(nodesMSS[,8:(8 + numOfItem)], 2, function(x) x * nodesMSS[,"weightsWtd"])
# sum weighted distribution
fyObsDist <- as.data.frame(matrix(colSums(fyThetaWeighted[,1:(1 + numOfItem)]), nrow = (1 + numOfItem), ncol = 1))
fyObsDist$y <- c(0:numOfItem) # test
names(fyObsDist) <- c("wts", "y")
fySSObsDist <- as.data.frame(matrix(colSums(fySSThetaWeighted[,1:(1 + numOfItem)]), nrow = (1 + numOfItem), ncol = 1))
fySSObsDist$roundedSS <- convTable$roundedSS # test
names(fySSObsDist) <- c("wts", "roundedSS")
# weighted mean of Obs Y
weightedMean <- sum(fyObsDist$y * fyObsDist$wts)/sum(fyObsDist$wts)
weightedMeanSS <- sum(fySSObsDist$roundedSS * fySSObsDist$wts)/sum(fySSObsDist$wts)
# variance of Obs Y
varianceObsY <- sum(fyObsDist$wts * (fyObsDist$y - weightedMean)^2)
varianceObsYSS <- sum(fySSObsDist$wts * (fySSObsDist$roundedSS - weightedMeanSS)^2)
# MIRT test reliability
TestRelBFMIRT <- 1 - varianceError/varianceObsY
TestRelBFMIRTSS <- 1 - varianceErrorSS/varianceObsYSS
varianceError
varianceObsY
TestRelBFMIRT
varianceErrorSS
varianceObsYSS
TestRelBFMIRTSS
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.