
An Infra-Structure for Performance Estimation

and Experimental Comparison

of Predictive Models in R

Luis Torgo
FCUP - LIAAD/INESC Tec

University of Porto
ltorgo@dcc.fc.up.pt, ltorgo@inesctec.pt

September 7, 2015

Abstract

This document describes an infra-structure provided by the R pack-
age performanceEstimation that allows to estimate the predictive per-
formance of different approaches (workflows) to predictive tasks. The
infra-structure is generic in the sense that it can be used to estimate the
values of any performance metrics, for any workflow on different predictive
tasks, namely, classification, regression and time series tasks. The pack-
age also includes several standard workflows that allow users to easily set
up their experiments limiting the amount of work and information they
need to provide. The overall goal of the infra-structure provided by our
package is to facilitate the task of estimating the predictive performance
of different modeling approaches to predictive tasks in the R environment.

1 Introduction

The goal of this document is to describe the infra-structure that is available
in package performanceEstimation 1 to estimate the performance of different
approaches to predictive tasks. The main goal of this package is to provide
a general infra-structure that can be used to estimate the performance using
several predictive performance metrics of any modelling approach to different
predictive tasks, with a minimal effort from the user. The package provides this
type of facilities for classification, regression and time series tasks. There is no
limitation on the type of approaches to these tasks for which you can estimate
the performance - the user just needs to provide a workflow function (following
some interface rules) that implements the approach for which the predictive
performance is to be estimated. The package includes some standard workflow
functions that implement the typical learn+test approach that most users will
be interested in. This means that if you just want to estimate the performance
of some variants of a method already implemented in R (e.g. an SVM), on some
particular tasks, you will be able to use these standard workflow functions and

1This document was written for version 1.0.2 of the package.

1

thus your required input will be limited to the minimum. The package also
provides a series of predictive performance metrics for different tasks. Still, you
are not limited to these metrics and can use any metric as long as it exists in
R or you provide a function calculating it. Finally, the package also include
several standard data pre-processing and predictions post-processing steps that
again can be incorporated into the workflows being evaluated.

This infra-structure implements different methods for estimating the predic-
tive performance. Namely, you can select among: (i) cross validation, (ii) hold-
out and random sub-sampling, (iii) leave one out cross validation, (iv) bootstrap
(ε0 and .631) and also (v) Monte-Carlo experiments for time series forecasting
tasks. For each of these tasks different options are implemented (e.g. use of
stratified sampling).

Most of the times experimental methodologies for performance estimation
are iterative processes that repeat the modeling task several times using different
train+test samples with the goal of improving the accuracy of the estimates.
The estimates are the result of aggregating the scores obtained on each of the
repetitions. For each of these repetitions different training and testing samples
are generated and the process being evaluated is ”asked” to: (i) obtain the
predictive model using the training data, and then (ii) use this model to obtain
predictions for the respective test sample. These predictions can then be used
to calculate the scores of the performance metrics being estimated. This means
that there is a workflow that starts with a predictive task for which training and
testing samples are given, and that it should produce as result the predictions
of the workflow for the given test sample. There are far too many possible
approaches and sub-steps for the implementation of this workflow. To ensure
full generality of the infra-structure, we allow the user to provide a function that
implements this workflow for each of the predictive approaches she/he wishes
to compare and/or evaluate. This function can be parameterizable in the sense
that there may be variants of the workflow that the user wishes to evaluate
and/or compare. Still, the goal of this workflow functions is very clear: (i)
receive as input a predictive task for which training and test samples are given,
as well as any eventual workflow specific parameters; and (ii) produce as result
a set of predictions for the given test set. These predictions will then be used
to obtain the scores of the predictive metrics for which the user is interested in
obtaining reliable estimates.

The infra-structure we describe here provides means for the user to indicate:
(i) a set of predictive tasks with the respective data sets; (ii) a set of workflows
and respective variants; and (iii) the information on the estimation task. The
infra-structure then takes care of all the process of experimentally estimating the
predictive performance of the different approaches on the tasks, producing as
result an object that can be explored in different ways to obtain the results of the
estimation process. The infra-structure also provides several utility functions to
explore these results objects, for instance to obtain summaries of the estimation
process both in textual format as well as visually. Moreover, it also provides
functions that carry out statistical significance tests based on the outcome of
the experiments.

Finally, the infra-structure provides utility functions implementing frequently
used workflows for common modelling techniques, several data pre-processing
steps and prediction post-processing operations, as well as functions that fa-
cilitate the automatic generation of variants of workflows by specifying sets of

2

parameters that the user wishes to consider in the comparisons.

2 Package Installation

The package can be installed as any other R package that is available at the R
central repository (CRAN), i.e. by simply executing the code:

install.packages("performanceEstimation")

This is the recommended form of installing the package an we assume that
you start by doing this before you proceed to try the examples described in this
document. This will install the current stable version of the package that at the
time of writing of this document is version 1.0.2 .

If you wish to try some eventual new developments of the package that are
still under testing and have not yet been released to the general public (thus are
subject to bugs), then you may install the development version of the package
that is available at the package GitHub Web page:

https://github.com/ltorgo/performanceEstimation

In order to install this development version (again not recommended unless
you have a good reason for it), you may issue the following commands in R:

library(devtools) # You need to install this package before!

install_github("ltorgo/performanceEstimation",ref="develop")

The GitHub Web page referred above is also the right place for you to report
any issues you have with the package or help in its development.

3 A Simple Illustrative Example

Let us assume we are interested in estimating the predictive performance of
several variants of an SVM on the Iris classification problem. More specifically,
we want to obtain a reliable estimate of the error rate of these variants using 10-
fold cross validation. The following code illustrates how these estimates could
be obtained with our proposed infra-structure.

library(performanceEstimation) # Loading our infra-structure

library(e1071) # A package containing SVMs

data(iris) # The data set we are going to use

res <- performanceEstimation(

PredTask(Species ~ .,iris),

Workflow("standardWF",learner="svm"),

EstimationTask(metrics="err",method=CV())

)

##

##

PERFORMANCE ESTIMATION USING CROSS VALIDATION

##

** PREDICTIVE TASK :: iris.Species

##

++ MODEL/WORKFLOW :: svm

3

https://github.com/ltorgo/performanceEstimation

Task for estimating err using

1 x 10 - Fold Cross Validation

Run with seed = 1234

Iteration : 1 2 3 4 5 6 7 8 9 10

This simple example illustrates several key concepts of our infra-structure.
First of all, we have the main function - performanceEstimation(), which is
used to carry out the estimation process. It has 3 main arguments: (i) a vector
of predictive tasks (in the example a single one); (ii) a vector of workflows
(in the example a single one); and (iii) the specification of the estimation task
(essentially the metrics to be estimated and the estimation methodology). The
package defines three classes of objects for storing the information related with
these three concepts: predictive tasks (S4 class PredTask); workflows (S4 class
Workflow); and estimation tasks (S4 class EstimationTask).

PredTask objects can be created by providing information on the formula
defining the task, the source data set (an R data frame or the name of such
object), and an optional ID (a string) to give to the task.

Workflow objects include information on the name of the function im-
plementing the workflow and any number of parameters to be passed to this
function when it will be called with different train and test sets.

EstimationTask objects provide information on the metrics for which we
want a reliable estimate and also the methodology to be used to obtain these esti-
mation. In case of metrics not defined with the package performanceEstimation
we also need to supply the name of the function that can be used to calculate
these specific metrics.

In the above simple example we are using the data frame iris to create a task
consisting of forecasting the variable Species using all remaining variables. We
are solving this classification task by using the function standardWF with the
parameter learner set to “svm”. This workflow function is already provided
by the package and essentially can be used for the most frequent situations
where a user just wants to apply and existing learning method to solve some
task. This avoids the need for the user to have to write the functions solving
the task. The standardWF function simply applies the modeling function in-
dicated through the parameter learner (in this case the function svm defined
in package e1071 [MDH+12]) to the training set, and uses the resulting model
to obtain the predictions for the test set. As we will see later the standardWF

function also implements a series of common data pre-processing steps (e.g. fill-
ing in unknown values), and several common prediction post-processing steps
(e.g. applying some transformation to the predicted values). Finally, the above
example specifies the estimation task as using 10-fold Cross Validation to obtain
estimates of the error rate.

The result of the call to performanceEstimation() is an S4 object of the
class ComparisonResults. These objects tipically are not directly explored by
the end-user so we ommit their details here2. There are several utility functions
that allow the users to explore the results of the experimental comparisons, as
shown by the next few illustrative examples.

2Interested readers may have a look at the corresponding help page -
class?ComparisonResults .

4

summary(res)

##

== Summary of a Cross Validation Performance Estimation Experiment ==

##

Task for estimating err using

1 x 10 - Fold Cross Validation

Run with seed = 1234

##

* Predictive Tasks :: iris.Species

* Workflows :: svm

##

-> Task: iris.Species

*Workflow: svm

err

avg 0.03333333

std 0.04714045

med 0.00000000

iqr 0.06666667

min 0.00000000

max 0.13333333

invalid 0.00000000

The generic function summary allows us to obtain the estimated scores for
each compared approach on each predictive task. For each performance metric
(in this case only the error rate), the function shows several descriptive statistics
of the performance of the workflow in the different iterations of the estimation
process. Moreover, information is also given on eventual failures on some of the
iterations.

The generic function plot can be used to obtain a graphical display of the
distribution of performance metrics across the different iterations of the estima-
tion process using box-plots, as show in Figure 1.

plot(res)

The above example is just a simple illustration of the key concepts of the
package performanceEstimation . Most of the times you will use the package
for more complex experiments, usually involving several tasks, several workflows
or workflow variants, and eventually estimating several performance metrics.
Before, we provide illustrations for these more complex setups we describe in
more detail the key concepts of the package performanceEstimation .

4 Predictive Tasks

Predictive tasks are data analysis problems where we want to obtain a model
of an unknown function Y = f(X1, X2, · · · , Xp) that relates a target variable
Y with a set of p predictors X1, X2, · · · , Xp. The model is usually obtained
using a sample of n observations of the mapping of the unknown function,
D = {〈xi, Yi〉}ni=1, where xi is a vector with the p predictors values and Yi
the respective target variable value. These data sets in R are usually stored in
data frames, and formula objects are used to specify the form of the functional
dependency that we are trying to model, i.e. which is the target variable and
the predictors.

5

iris.Species

0.00

0.05

0.10

err

svm

Alternative Workflows

D
is

tr
ib

ut
io

n
of

 S
ta

tis
tic

s
S

co
re

s

Cross Validation Performance Estimation Results

Figure 1: The distribution of the error rate on the 10 folds. Red dots show the
performance on each individual iteration of the estimation process.

Objects of class PredTask encapsulate the information of a predictive task,
i.e. the functional form and the data required for solving it. For convenience
they also allow the user to assign a name to each task. These S4 objects can
be created using the construtor function PredTask(), as seen in the following
example:

data(iris)

PredTask(Species ~ .,iris)

Prediction Task Object:

Task Name :: iris.Species

Task Type :: classification

Target Feature :: Species

Formula :: Species ~ .

Task Data Source :: iris

We should remark that, by default and for memory economy particularly if
you are using large data sets, the objects of this class do not copy internally
the data of the provided data frame. This means that they assume that the
data frame provided in the second argument will still exist when the estima-
tion experiments will be executed. If you want the data to be copied into the
PredTask object then you should call the constructor as follows:

data(iris)

PredTask(Species ~ .,iris,copy=TRUE)

Prediction Task Object:

Task Name :: iris.Species

6

Task Type :: classification

Target Feature :: Species

Formula :: Species ~ .

Task Data Source :: internal 150x5 data frame.

Note the difference on the task data source information to indicate that the
data set is stored internally (i.e. a copy was made from the provided object).

5 Workflows and Workflow Variants

Estimation methodologies work most of the times by re-sampling the available
data set D in order to create different train and test samples from D (an excep-
tion being a single repetition of hold-out). The goal is to estimate the predictive
performance of a proposed workflow to solve the task, by using these different
samples to increase our confidence on the estimates. This workflow consists on
the process of obtaining a model from a given training sample and then use it to
obtain predictions for the given test set. This process can include several steps,
e.g. specific data pre-processing steps, and may use any modelling approach,
eventually developed by the user.

We distinguish two types of workflows: (i) generic, and (ii) user-defined.
The first are probably the most common setups where the user simply wants
to apply methods that already exist in R to some task. The second covers
situations where the user has developed her/his own specific approach to solve
a task and wants to apply it to some concrete problems. The package covers
both situations as we will see.

Independently of the workflows being generic or user-defined, they will typi-
cally have parameters that we can tune to try to improve the results. Frequently,
we want to estimate and compare the performance of these parameter variants
over some set of tasks. Our package also facilitates these setups by providing a
function to easily specify these alternatives.

5.1 Workflow Variants

The function workflowVariants provides means to easily create a vector of
Workflow objects, each resulting from a variation of some parameter values of
a certain workflow. For instance, suppose you want to evaluate the performance
of SVMs on a certain task and you wish to consider a certain range of values for
the parameters cost and gamma of the function svm from package e1071. You
could obviously create a vector of Workflow objects, one for each combination
of cost and gamma you wish to consider in your experiment. This could
become very easily an annoying task if you want to consider a large number of
combinations. Instead you can use the workflowVariants function.

The following example illustrates its use by considering 15 variants of SVMs
applied to the Boston Housing data:

library(performanceEstimation)

library(e1071)

data(Boston,package="MASS")

exp <- performanceEstimation(

PredTask(medv ~ .,Boston),

7

workflowVariants(wf="standardWF",learner="svm",

learner.pars=list(cost=1:5,gamma=c(0.1,0.05,0.01))),

EstimationTask(metrics="mae",method=CV())

)

The function accepts any workflow function in parameter wf. All remaining
parameters are taken as parameters of that workflow function. If you include any
of these parameters with a vector of values (as it is the case of cost and gamma
in the above example), the values in these vectors will be used to generate
variants of the workflow. The variants are essentially all possible combinations
of the values in each vector. In the above example we provide 5 values for cost
and 3 for gamma and thus we will have 15 Workflow objects. It may happen
that some of the parameters of the workflow actually take as valid values a
vector. In those situations you do not want the function to use the values to
generate variants. You can achieve this effect by including the name of that
parameter in the parameter as.is of the function workflowVariants.

5.2 Generic Workflows

Most of the times users want to evaluate standard workflows on some tasks.
This means that they want to use existing out-of-the-box tools within R and
apply them to some data sets. As such, the most frequently used workflows
will essentially build a model using some existing algorithm and obtain its
predictions for the test set. To facilitate this type of approaches, package
performanceEstimation includes generic workflow functions. The idea is to
save the user from having to write her/his own workflow functions provided
her/his workflow fits this generic schema.

5.2.1 Classification and Regression Tasks

Function standardWF() implements a typical workflow for both classification
and regression tasks. Apart from a formula, a training set data frame and a
test set data frame, this function has the following main parameters that help
the user to specify the intended approach:

learner - the name of an R function that obtains a model from the training
data. This function will be called with a formula in the first argument
and the training set data frame in the second. This will typically be the
name of some existing learning algorithm in R.

learner.pars - a list specifying any extra parameter settings that should be
added to the formula and training set, at the time the learner function is
called (defaults to NULL).

predictor - the name of an R function that is able to obtain the predictions of
the model obtained with learner. This function will be called with the
object resulting from the learner call on the first argument and the test
set data frame in the second (it defaults to function predict). Most of the
times you will not change this default because most modeling techniques
in R have a predict method that can be applied to the models.

8

predictor.pars - a list specifying any extra parameter settings that should
be added to the model and test set, at the time the predictor function
is called (defaults to NULL). This is sometimes handy has some predict
methods of some algorithms allow for instance to either return class labels
or probabilities, and the option is made through some extra parameter
when calling the predict function.

Below you find another simple example that illustrates the use of some of
these parameters, this time to estimate the accuracy of 3 variants of a classifi-
cation tree using 2×5-CV.

library(performanceEstimation)

library(DMwR)

data(iris)

res <- performanceEstimation(

PredTask(Species ~ .,iris),

workflowVariants(learner="rpartXse",

learner.pars=list(se=c(0,0.5,1)),

predictor.pars=list(type="class")),

EstimationTask(metrics="acc",method=CV(nReps=2,nFolds=5))

)

Notice how we have omitted the specification of the workflow name in the
call to workflowVariants. If you do not specify it through parameter wf the
function will assume that you want to use the workflow defined by the function
standardWF, unless there is a parameter type in the call which will lead to
assume a time series generic workflow provided by function timeseriesWF that
will be described in Section 5.2.2. In effect, you can also use the same speedup
trick when calling directly the Workflow constructor, i.e.
Workflow("standardWF",learner="svm")

is equivalent to
Workflow(learner="svm").

We now present an example of one of the most frequent type of comparisons
users carry out - checking which is the “best” model for a given predictive task.
Let us restrict the search to a small set of models for illustrative purposes and
let us play with the well-known Boston housing regression task:

data(Boston,package='MASS')

library(DMwR)

library(e1071)

library(randomForest)

bostonRes <- performanceEstimation(

PredTask(medv ~ .,Boston),

workflowVariants(learner=c('rpartXse','svm','randomForest')),

EstimationTask(metrics="mse",method=CV())

)

Notice that on this simple example we have used all modeling tools with
their default parameter settings which is not necessarily a good idea when we are
looking for the best performance. Still, the goal of this illustration is to show you
how simple this type of experiments can be if you are using a standard workflow
setting. In case you want to use the modelling tools with other parameter
settings then you should separate them in different workflowVariants calls

9

because each learner will most probably use different parameters, as shown in
the following example:

data(Boston,package='MASS')

library(DMwR)

library(e1071)

library(randomForest)

bostonRes <- performanceEstimation(

PredTask(medv ~ .,Boston),

c(workflowVariants(learner='rpartXse',

learner.pars=list(se=c(0,1))),

workflowVariants(learner='svm',

learner.pars=list(cost=c(1,5),gamma=c(0.01,0.1))),

workflowVariants(learner='randomForest',

learner.pars=list(ntree=c(500,1000)))),

EstimationTask(metrics="mse",method=CV())

)

Notice that this code involves estimating the mean squared error on the
Boston Housing task for 8 different models through 10-fold cross validation (the
CV function assumes nFolds=10 by default).

On top of using out-of-the-box existing algorithms users also frequently ap-
ply standard data pre-processing steps before the models are obtained. Our
standardWF function also implements a few examples of these steps that you
can include in your comparisons. The following is a list of the parameters of
this function that control these steps:

pre - A vector of function names that will be applied in sequence to the train
and test data frames, generating new versions, i.e. a sequence of data
pre-processing functions.

pre.pars - A named list of parameter values to be passed to the pre-processing
functions.

We have implemented a few of these functions. Namely, in the pre argument
you may use the following strings:

scale - that scales (subtracts the mean and divides by the standard deviation)
any numeric features on both the training and testing sets. Note that
the mean and standard deviation are calculated using only the training
sample.

centralImp - that fills in any NA values in both sets using the median value for
numeric predictors and the mode for nominal predictors. Once again these
centrality statistics are calculated using only the training set although they
are applied to both train and test sets.

na.omit - that uses the R function na.omit to remove any rows containing
NA’s from both the training and test sets.

undersampl - this undersamples the training data cases that do not belong to
the minority class (this pre-processing step is only available for classifica-
tion tasks!). It takes the parameter perc.under that controls the level
of undersampling (defaulting to 1, which means that there would be as
many cases from the minority as from the other(s) class(es)).

10

smote - this operation uses the SMOTE [CBHK02] resampling algorithm to
generate a new training sample with a more “balanced” distribution of
the target class (this pre-processing step is only available for classification
tasks!). It takes the parameters perc.under, perc.over and k to control
the algorithm. Read the documentation of function SMOTE to know more
details.

Note that you can also write your own data pre-processing functions provided
you follow some protocol, and then use the name of your functions in the pre
argument. Check the help page of function standardPRE to know the details
on this simple protocol to write your own pre-processing functions.

The following is a simple example of using data pre-processing steps within
our provided generic workflows:

library(performanceEstimation)

data(algae,package="DMwR")

res <- performanceEstimation(

PredTask(a1 ~ .,algae[,1:12],"AlgaA1"),

Workflow(learner="lm",pre=c("centralImp","scale")),

EstimationTask(metrics="mae",method=CV())

)

##

##

PERFORMANCE ESTIMATION USING CROSS VALIDATION

##

** PREDICTIVE TASK :: AlgaA1

##

++ MODEL/WORKFLOW :: lm

Task for estimating mae using

1 x 10 - Fold Cross Validation

Run with seed = 1234

Iteration : 1 2 3 4 5 6 7 8 9 10

Finally, standard workflows may also include some post-processing steps to
be applied to the predictions of the model. These may include for instance
some re-scaling of these predictions or even minimizing the risk of predictions
through some cost-based approach. Function standardWF also accepts some
parameters that control these post-processing steps. The following is a list of
the parameters of this function that control these steps:

post - A vector of function names that will be applied in sequence to the
predictions of the model, generating a new version, i.e. a sequence of data
post-processing functions.

post.pars - A named list of parameter values to be passed to the post-processing
functions.

As with pre-processing steps you may also write your own prediction post-
processing functions (check the help page of standardPOST for details). Still,
we currently provide the following alternatives:

na2central - this function fills in any NA predictions into either the median
(numeric targets) or mode (nominal targets) of the target variable on the
training set. Note that this is only applicable to predictions that are
vectors of values.

11

onlyPos - in some numeric forecasting tasks the target variable takes only pos-
itive values. Nevertheless, some models may insist in forecasting negative
values. This function casts these negative values to zero. Note that this
is only applicable to predictions that are vectors of numeric values.

cast2int - in some numeric forecasting tasks the target variable takes only
values within some interval. Nevertheless, some models may insist in
forecasting values outside of this interval. This function casts these values
into the nearest interval boundary. This function requires that you supply
the limits of this interval through parameters infLim and supLim. Note
that this is only applicable to predictions that are vectors of numeric
values.

maxutil - maximize the utility of the predictions [Elk01] of a classifier. This
method is only applicable to classification tasks and to algorithms that are
able to produce as predictions a vector of class probabilities for each test
case, i.e. a matrix of probabilities for a given test set. The method requires
a cost-benefit matrix to be provided through the parameter cb.matrix.
For each test case, and given the probabilities estimated by the classi-
fier and the cost benefit matrix, the method predicts the classifier that
maximizes the utility of the prediction. This approach [Elk01] is a slight
’evolution’ of the original idea [BFOS84] that only considered the costs of
errors and not the benefits of the correct classifications as in the case of
cost-benefit matrices we are using here. The parameter cb.matrix must
contain a (square) matrix of dimension NClasses×NClasses where entry
Xi,j corresponds to the cost/benefit of predicting a test case as belong-
ing to class j when it is of class i. The diagonal of this matrix (correct
predicitons) should contain positive numbers (benefits), whilst numbers
outside of the matrix should contain negative numbers (costs of misclas-
sifications). See the Examples section of the help page of the function
standardPOST for an illustration.

In the next example we illustrate the use of the post-processing routines by
“correcting” the predictions of a linear regression model regards the frequency
of occurrence of an alga, which can not be below zero:

library(performanceEstimation)

data(algae,package="DMwR")

res <- performanceEstimation(

PredTask(a1 ~ .,algae[,1:12],"AlgaA1"),

c(Workflow(wfID="lm",

learner="lm",

pre=c("centralImp","scale")),

Workflow(wfID="lmOnlyPos",

learner="lm",

pre=c("centralImp","scale"),

post=c("onlyPos"))),

EstimationTask(metrics="mae",method=CV())

)

##

##

PERFORMANCE ESTIMATION USING CROSS VALIDATION

12

##

** PREDICTIVE TASK :: AlgaA1

##

++ MODEL/WORKFLOW :: lm

Task for estimating mae using

1 x 10 - Fold Cross Validation

Run with seed = 1234

Iteration : 1 2 3 4 5 6 7 8 9 10

##

++ MODEL/WORKFLOW :: lmOnlyPos

Task for estimating mae using

1 x 10 - Fold Cross Validation

Run with seed = 1234

Iteration : 1 2 3 4 5 6 7 8 9 10

summary(res)

##

== Summary of a Cross Validation Performance Estimation Experiment ==

##

Task for estimating mae using

1 x 10 - Fold Cross Validation

Run with seed = 1234

##

* Predictive Tasks :: AlgaA1

* Workflows :: lm, lmOnlyPos

##

-> Task: AlgaA1

*Workflow: lm

mae

avg 14.308536

std 1.857755

med 14.340022

iqr 2.447854

min 11.652404

max 17.451525

invalid 0.000000

##

*Workflow: lmOnlyPos

mae

avg 13.116271

std 1.690161

med 13.173095

iqr 2.273219

min 9.955684

max 15.302897

invalid 0.000000

As you see this simple post-processing step improved the performance of the
model considerably.

5.2.2 Time Series Tasks

Our infra-structure also includes another generic workflow function that is spe-
cific for predictive tasks with time-dependent data (e.g. time series forecasting
problems). This workflow function implements two different approaches to the
problem of training a model with a set of time-dependent data and then use it
to obtain predictions for a test set in the future. These two approaches con-
trast with the standard approach of learning a model with the available training
sample and then use it to obtain predictions for all test period. This standard

13

approach could be applied using the previously described standardWF() func-
tion. However, there are alternatives to this procedure, two of the most common
being the sliding and growing window approaches, which are implemented in an-
other workflow function developed specifically for time series tasks.

Predictive tasks for time-dependent data are different from standard clas-
sification and regression tasks because they require that the test samples have
time stamps that are more recent then training samples. In this context, exper-
imental methodologies handling these tasks should not shuffle the observations
to maintain the time ordering of the original data. The most common setup is
that we have a L time steps training window containing observations in the pe-
riod [t1, tL] and a F time steps test window typically containing the observations
in the time window [tL+1, tL+F].

The idea of the sliding window method is that if we want a prediction for
time point tk belonging to the test interval [tL+1, tL+F] then we can assume
that all data from tL+1 till tk−1 is already past, and thus usable by the model.
In this context, it may be wise to use this new data in the interval [tL+1, tk−1]
to update the original model obtained using only the initial training period
data. This is particularly advisable if we suspect that the conditions may have
changed since the training period has ended. Model updating using the sliding
window method is carried out by using the data in the L last time steps, i.e.
every new model is always obtained using the last L data observations, as if
the training window was slided forward in time. Our timeseriesWF() function
implements this idea for both time series with a numeric target variable and
a nominal target variable. This function has a parameter (type) that if set to
“slide” will use a sliding window approach. As with the standardWF() function,
this timeseriesWF() function also accepts parameters specifying the learner,
predictor, and their respective parameters, as well as the previously defined pre-
and post-processing steps, all with exactly the same names and possible values
(c.f. Section 5.2.1). Moreover, this function also includes an extra parameter,
named relearn.step, which allows the user to establish the frequency of model
updating. By default this is every new test sample, i.e. 1, but the user may set
a less frequent model-updating policy by using higher values of this parameter
to avoid high computation costs.

The idea of the growing window approach is very similar. The only difference
is on the data used when updating the models. Whilst sliding window uses the
data occurring in the last L time steps, growing window keeps increasing the
original training window with the newly available data points, i.e. the models
are obtained with increasingly larger training samples. By setting the parameter
type to “grow” you get the timseriesWF() function to use this method.

The following code illustrates these two approaches by comparing them to
the standard approach of using a single model to forecast all testing period:

library(performanceEstimation)

library(quantmod)

library(randomForest)

getSymbols('^GSPC',from='2008-01-01',to='2012-12-31')

data.model <- specifyModel(

Next(100*Delt(Ad(GSPC))) ~ Delt(Ad(GSPC),k=1:10))

data <- as.data.frame(modelData(data.model))

colnames(data)[1] <- 'PercVarClose'

spExp <- performanceEstimation(

PredTask(PercVarClose ~ .,data,'SP500_2012'),

14

c(Workflow(wf='standardWF',wfID="standRF",

learner='randomForest',

learner.pars=list(ntree=500)),

Workflow(wf='timeseriesWF',wfID="slideRF",

learner='randomForest',

learner.pars=list(ntree=500),

type="slide",

relearn.step=30),

Workflow(wf='timeseriesWF',wfID="growRF",

learner='randomForest',

learner.pars=list(ntree=500),

type="grow",

relearn.step=30)

),

EstimationTask(metrics=c("mse","theil"),

method=MonteCarlo(nReps=5,szTrain=0.5,szTest=0.25))

)

The above example applies 3 different workflows to the task of trying to
forecast the percentage daily variation of the prices of S&P 500, using some
information of the previous prices as predictors. Namely, all workflows use a
random forest with 500 trees but the predictions for each test set of the 5 rep-
etitions Monte Carlo estimation methodology (c.f. Section 6.3.5), are obtained
differently. The first workflow, named “standRF”, obtains a single random for-
est with the training set and uses it to obtain predictions for the full test set. The
other two approaches, instead of using this standard workflow, take advantage
of the workflow provided by timeseriesWF and use either sliding or growing
windows to obtain these predictions. For both these two latter approaches a
new random forest is obtained after each 30 new test cases (set by parameter
relearn.step).

5.3 User-defined Workflows

With the goal of ensuring that the proposed infra-structure is able to cope
with all possible usage scenarios, we also allow the user to write and provide
her/his own workflow functions to be used in the estimation tasks, provided they
follow some protocol. Namely, these user-defined workflow functions should be
written such that the first three parameters are: (i) the formula defining the
predictive task; (ii) the provided training sample; and (iii) the test sample for
which predictions are to be obtained. The functions may eventually accept other
arguments with specific parameters of the user-defined workflow. The following
is a general sketch of a user-defined workflow function:

myWorkFlow <- function(form,train,test,...) {
require(mySpecialPackage,quietly=TRUE)

cary out some data pre-processing

myTrain <- mySpecificPreProcessingSteps(train)

now obtain the model

myModel <- myModelingTechnique(form,myTrain,...)

obtain the predictions

preds <- predict(myModel,test)

cary out some predictions post-processing

newPreds <- mySpecificPostProcessingSteps(form,train,test,preds)

names(newPreds) <- rownames(test)

finally produce the list containing the output of the workflow

res <- list(trues=responseValues(form,test),preds=newPreds)

15

return(res)

}

Not all workflows will require all these steps, though some may even require
more. This is clearly something that is up to the user. The only strict re-
quirements for these functions are: (i) the first 3 parameters of the workflow
function should be the formula, train and test data frames; and (ii) the result
of the function should be a list.

Regarding the components of this results list, in case you wish to use the
functions of the package that calculate some standard prediction metrics, then
you should make sure that this list contains at least a component named trues

with the vector of the true values of the target variable in the test set, and
another component named preds with the respective predictions produced by
the workflow for this test cases. These lists returned by the workflows may
optionally contain any other information the creator of the workflow function
deems important to return.

The sketch shown above also illustrates the use of the function responseValues()

that can be used to obtain the values of the target variable given a formula and
a data frame.

On top of the 3 mandatory parameters (formula, training and test sets), user-
defined workflow functions may also accept any other arguments. As we have
seen in Section 5.1 we provide the function workflowVariants() to facilitate the
specification of different variants of any workflow function by trying all combina-
tions of several of its specific parameters. For instance, if the modelling function
in the above example workflow (function myModelingTechnique()) had an in-
teger parameter x and a Boolean parameter y, we could generate several Work-
flow objects to be evaluated/compared using the performanceEstimation()

function, as follows:

workflowVariants('myWorkFlow',x=c(0,3,5,7),y=c(TRUE,FALSE))

This would generate 8 variants of the same workflow with all combinations
of the specified values for the 2 parameters.

Let us see a concrete example of a user supplied workflow function. Imagine
we want to evaluate a kind of ensemble model formed by a regression tree and a
multiple linear regression model on an algae blooms data set [Tor10]. We write
a workflow function that implements our intended workflow:

RLensemble <- function(f, tr, ts, weightRT=0.5, step=FALSE, ..., .models=FALSE) {
require(DMwR,quietly=TRUE)

Getting the column id of the target variable

tgtCol <- which(colnames(tr) == as.character(f[[2]]))

filling in NAs using knnImputation

noNAsTR <- tr

noNAsTS <- ts

noNAsTR[,-tgtCol] <- knnImputation(tr[,-tgtCol])

noNAsTS[,-tgtCol] <- knnImputation(ts[,-tgtCol],distData=tr[,-tgtCol])

r <- rpartXse(f,tr,...)

l <- lm(f,noNAsTR)

if (step) l <- step(l,trace=0)

pr <- predict(r,ts)

pl <- predict(l,noNAsTS)

ps <- weightRT*pr+(1-weightRT)*pl

16

names(ps) <- rownames(ts)

res <- list(trues=responseValues(f,ts),preds=ps)

if (.models) res <- c(res,list(linearModel=l,tree=r))

res

}

This workflow starts by building two modified samples of the training and
testing sets, with the NA values being filled in using a nearest neighbour strategy
(see the help page of the function knnImputation() for more details). These
versions are to be used by the lm() function that is unable to cope with cases
with missing values. After obtaining the two models and their predictions
the function calculates a weighted average of both predictions. Note that if
.models=TRUE we add the models to the results list.

To evaluate different variants of this workflow we could run the following
experiment:

data(algae,package='DMwR')

expRes <- performanceEstimation(

PredTask(a1 ~ .,algae[,1:12],'alga1'),

workflowVariants('RLensemble',

se=c(0,1),step=c(TRUE,FALSE),weightRT=c(0.4,0.5,0.6)),

EstimationTask("mse",method=CV()))

6 Estimation Tasks

The third argument of the main function performanceEstimation defines the
estimation task we want to carry out. Its value is an S4 object of class Estima-
tionTask that can be created through the constructor function with the same
name. The main arguments of this constructor are metrics and method. The
first is a vector with names of metrics for which we want reliable estimates, while
the second is the method to be used to obtain these estimates. Other arguments
of the constructor are evaluator and evaluator.pars that allow the specifi-
cation of functions for calculating user-defined evaluation metrics. Finally, the
last parameter of the constructor is trainReq that is a Boolean value indicat-
ing whether the training data should also be “sent” to the evaluation functions.
This is useful for metrics that require the training data for being calculated
(e.g. some normalized metrics use the average value of the target variable in
the training set).

6.1 Performance Metrics

The package implements a reasonable set of the most common performance met-
rics. These include classification, regression and time series metrics. These are
internally calculated by the functions classificationMetrics and regressionMetrics.
The help pages of these two functions include an exhaustive list of these metrics
together with their definitions. Depending on the predictive tasks being used
one of these functions will be called to calculate the metrics the user indicates
in the parameter metrics of the EstimationTask constructor. The user may
also omit the metrics parameter and in that case all metrics available in the
evaluation function will be calculated. On top of the metrics implemented in

17

these functions the user may also include the strings “trTime”, “tsTime” and
“totTime” to obtain estimates of the training, testing and total computation
times taken by the workflow.

6.2 User-defined Performance Metrics

Although the functions classificationMetrics and regressionMetrics im-
plement a large set of performance metrics, it is inevitable that some applica-
tions may require some domain-specific metrics for which users want reliable
estimates. Our package allows the indication of user-defined functions that
calculate such domain-specific metrics. This is achieved through parameters
evaluator and evaluator.pars of the EstimationTask constructor. The first
allows the user to specify the name of such function, whilst the second is a list
with parameter values to use when calling such function. In order to be usable
by our package such functions need to obey some input/output protocol. In
terms of input parameters to these functions, our infra-structure will call these
user-defined functions with: (i) the outcome of the workflow; (ii) any metric
names that were specified in parameter metrics; (iii) the target values in the
training set if the parameter trainReq was set to TRUE; and (iv) any other
parameters specified through evaluator.pars. In terms of output, the user-
defined functions must return as a result a (named) vector with as many scores
as the number of metrics specified by the user. The names of the scores in the
vector should be the names of the metrics specified in the parameter metrics.

Suppose we want to calculate the error of a regression model as the difference
between true and predicted values raised to some power. We could define a
function to calculate such metric following our package input/output protocol
as:

powErr <- function(trues,preds,pow=3,...) {
c(pow.err = mean((trues-preds)^pow))

}

Using such function in the context of some 10-fold cross validation estimation
experiment would involve creating an estimation task as:

EstimationTask(metrics="pow.err",method=CV(),

evaluator="powErr",evaluator.pars=list(pow=4))

In effect, you could take advantage of the defaults and actually just call it
like this:

EstimationTask(evaluator="powErr",evaluator.pars=list(pow=4))

The default of method is exactly Cross validation and the default of met-
rics is to calculate all metrics of the provided evaluator function.

6.3 Estimation Methodologies

There are different ways of providing reliable estimates of the predictive perfor-
mance of a workflow. Our infra-structure implements some of the most common
estimation methods. In this section we briefly describe them and provide short
illustrative examples of their use.

18

The parameter method of the EstimationTask constructor allows the user
to specify the estimation methodology that will be used. The next sections
explain the options available.

6.3.1 Cross Validation

k-Fold cross validation (CV) is one of the most common methods to estimate
the predictive performance of a model. By including an S4 object of class CV
in the parameter method we can carry out experiments of this type.

The constructor function CV() can be used to obtain objects of class CV. It
accepts the following parameters:

nReps - the number of repetitions of the k-fold CV experiment (default is 1)

nFolds - the number of k folds to use (default is 10)

seed - the random number generator seed to use (default is 1234)

strat - whether to use stratified samples on the different iterations (default is
FALSE)

dataSplits - a list containing the data splits to use on each repetition of a
k-folds CV experiment (defaulting to ‘NULL’). Check the help page of the
class CV for further details.

Bellow you can find a small illustration using the Breast Cancer data set
available in package mlbench. On this example we compare some variants of
an SVM using a 3 × 10−fold cross validation process with stratified sampling
because one of the two classes has a considerably lower frequency.

data(BreastCancer,package='mlbench')

library(e1071)

bcExp <- performanceEstimation(

PredTask(Class ~ .,BreastCancer[,-1],'BreastCancer'),

workflowVariants('standardWF',

learner='svm',

learner.pars=list(cost=c(1,5),gamma=c(0.01,0.1))

),

EstimationTask(metrics=c("F","prec","rec"),

evaluator.pars=list(posClass="malignant"),

method=CV(nReps=3,nFolds=10,strat=TRUE)))

Please note the use of the evaluator.pars parameter of the EstimationTask
constructor function. We have used it to indicate which of the class labels of
this problem should be considered the “positive” class, which is required to
compute the values of the F, recall and precision metrics we are estimating
through 3 × 10−fold cross validation. This parameter setting is passed to the
classificationMetrics function that is the default for classification tasks like
Breast Cancer.

6.3.2 Bootstrapping

Bootstrapping or bootstrap resampling is another well-known experimental method-
ology that is implemented in our package. Namely, we implement two of the
most common methods of obtaining bootstrap estimates: ε0 and .632 bootstrap.

19

By including an S4 object of class Bootstrap in the method argument we can
carry out experiments of this type.

Function Bootstrap() can be used as a constructor of objects of class Boot-
strap. It accepts the following arguments:

type - a string with the type of bootstrap estimates: either ”e0” for ε0 boot-
strap, or ”.632” for .632 bootstrap (default is ”e0”)

nReps - the number of repetitions of the bootstrap experiment (default is 200)

seed - the random number generator seed to use (default is 1234)

dataSplits - a list containing user-supplied data splits for each of the repeti-
tions (check the help page of the class for further details). This parameter
defaults to NULL, i.e. no user-supplied splits, they are decided internally
by the infra-structure.

Bellow you can find a small illustration using the Servo data set available in
package mlbench. On this example we compare some variants of an artificial
neural network using 100 repetitions of a bootstrap experiment.

data(Servo,package='mlbench')

library(nnet)

nnExp <- performanceEstimation(

PredTask(Class ~ .,Servo),

workflowVariants(learner='nnet',

learner.pars=list(trace=F,linout=T,

size=c(3,5),decay=c(0.01,0.1))

),

EstimationTask(metrics="mse",method=Bootstrap(nReps=100)))

6.3.3 Holdout and Random Sub-sampling

The Holdout is another frequently used experimental methodology, particularly
for large data sets. To carry out this type of experiments in our infra-structure
we can include an S4 object of class Holdout in the third argument of function
performanceEstimation().

Function Holdout() can be used as a constructor of objects of class Hold-
out. It accepts the following arguments:

nReps - the number of repetitions of the Holdout experiment (default is 1)

hldSz - the percentage of cases (a number between 0 and 1) to leave as holdout
(test set) (default is 0.3)

seed - the random number generator seed to use (default is 1234)

strat - whether to use stratified samples (default is FALSE)

dataSplits - a list containing user-supplied data splits for each of the repeti-
tions (check the help page of the class for further details). This parameter
defaults to NULL, i.e. no user-supplied splits, they are decided internally
by the infra-structure.

20

Please note that for the usual meaning of Holdout the number of repetitions
should be 1 (the default), while larger values of this parameter correspond to
what is usually known as random subsampling.

The following is a small illustrative example of the use of the random sub-
sampling with the LetterRecognition classification task from package mlbench.

data(LetterRecognition,package='mlbench')

ltrExp <- performanceEstimation(

PredTask(lettr ~ .,LetterRecognition),

workflowVariants(learner='rpartXse',

learner.pars=list(se=c(0,1)),

predictor.pars=list(type='class')

),

EstimationTask(metrics="err",method=Holdout(nReps=3,hldSz=0.3)))

Please note the use of the predictor.pars parameter of our standardWF()
function to be able to cope with the fact that the predict method for classifica-
tion trees requires the use of type="class" to get actual predicted class labels
instead of class probabilities.

6.3.4 Leave One Out Cross Validation

Leave one out cross validation is a type of cross validation method that is mostly
used for small data sets. You can think of leave one out cross validation as a
k-fold cross validation with k equal to the size of the available data set. To carry
out this type of experiments in our infra-structure we can include an S4 object
of class LOCV in the third argument of function performanceEstimation().

Function LOOCV() can be used as a constructor of objects of class LOOCV.
It accepts the following arguments:

seed - the random number generator seed to use (default is 1234)

dataSplits - a list containing user-supplied data splits for each of the repeti-
tions (check the help page of the class for further details). This parameter
defaults to NULL, i.e. no user-supplied splits, they are decided internally
by the infra-structure.

The following is a small illustrative example of the use of the LOOCV with
the Iris classification task.

data(iris)

library(e1071)

irisExp <- performanceEstimation(

PredTask(Species ~ .,iris),

workflowVariants(learner='svm',

learner.pars=list(cost=c(1,10))

),

EstimationTask(metrics="acc",method=LOOCV()))

6.3.5 Monte Carlo Experiments

Monte Carlo experiments are similar to random sub-sampling (or repeated Hold-
out) in the sense that they consist of repeating a learning + testing cycle several

21

times using different and eventually overlapping data samples. The main dif-
ference lies on the way the samples are obtained. In Monte Carlo experiments
the original order of the observations is respected and train and test splits are
obtained such that the testing samples appear “after” the training samples, thus
being the methodology of choice when you are comparing time series forecasting
models. The idea of Monte Carlo experiments is the following: (i) given a data
set spanning from time t1 till time tN , (ii) given a training set time interval
size wtrain and a test set time interval size wtest, such that wtrain +wtest < N ,
(iii) Monte Carlo experiments generate r random time points from the interval
[t1+wtrain , tN−wtest], and then (iv) for each of these r time points they generate
a training set with data in the interval [tr−wtrain+1, tr] and a test set with data
in the interval [tr+1, tr+wtest

]. Using this process r train+test cycles are carried
out using the user-supplied workflow function, and the experiment estimates
result from the average of the r scores as usual. The overall process is depicted
in Figure 2.

Figure 2: The Monte Carlo estimation methodology.

To carry out this type of experiments in our infra-structure we can in-
clude an S4 object of class MonteCarlo in the third argument of function
performanceEstimation().

The function MonteCarlo() can be used as a constructor of objects of class
MonteCarlo. It accepts the following arguments:

nReps - the number of repetitions of the Monte Carlo experiment (default is
10)

szTrain - the percentage (a number between 0 and 1) or the actual number of
cases to use in the training samples (default is 0.25)

szTest - the percentage (a number between 0 and 1) or the actual number of
cases to use in the test samples (default is 0.25)

seed - the random number generator seed to use (default is 1234)

dataSplits - a list containing user-supplied data splits for each of the repeti-
tions (check the help page of the class for further details). This parameter
defaults to NULL, i.e. no user-supplied splits, they are decided internally
by the infra-structure.

22

The following is a small illustrative example using the quotes of the SP500
index. This example compares two random forests with 500 regression trees,
one applied in a standard way, and the other using a sliding window with a
relearn step of 5 days. The experiment uses 10 repetitions of a train+test cycle
using 50% of the available data for training and 25% for testing.

library(quantmod)

library(randomForest)

getSymbols('^GSPC',from='2008-01-01',to='2012-12-31')

data.model <- specifyModel(

Next(100*Delt(Ad(GSPC))) ~ Delt(Ad(GSPC),k=1:10))

data <- modelData(data.model)

colnames(data)[1] <- 'PercVarClose'

spExp <- performanceEstimation(

PredTask(PercVarClose ~ .,data,'SP500_2012'),

c(Workflow('standardWF',wfID="standRF",

learner='randomForest',learner.pars=list(ntree=500)),

Workflow('timeseriesWF',wfID="slideRF",

learner='randomForest',

learner.pars=list(ntree=500,relearn.step=30))

),

EstimationTask(metrics="theil",

method=MonteCarlo(nReps=10,szTrain=0.5,szTest=0.25)))

Note that in the above example we have not tried any variants of the two
workflows that are applied to the task. This means that we have used directly
the Workflow constructor to create our workflow. Note also the use of the wfID

parameter of this constructor to allow you to give a particular workflow ID to
some approach.

7 Statistical Significance of Differences

The estimation methodologies that we have presented in the previous sections
allow the user to obtain estimates of the mean predictive performance of differ-
ent workflows or variants of these workflows, on different predictive tasks. We
have seen that by applying the summary method to the objects resulting from
the estimation experiments we can obtain the average performance for each
candidate workflow on each task. These numbers are estimates of the expected
mean performance of the workflows on the respective tasks. Being estimates,
the obvious next question is to check whether the observed differences in per-
formance between the workflows are statistically significant. More formally, we
want to know that confidence level of rejecting the null hypothesis that the
difference between the estimated averages is zero.

That is the goal of the function pairedComparisons(). This function imple-
ments a series of statistical hypothesis tests that can be used in different types
of setups. We follow the general recommendations of Demsar [Dem06]. The
function pairedComparisons() implements a series of statistical tests that can
be used under different conditions. The function calculates them all (whenever
possible) and it is up to the user to use the ones that are more adequate to
answer her/his research questions (see Demsar [Dem06] for a series of guidelines
on how to proceed).

23

Function pairedComparisons() returns a list with as many components as
there are metrics estimated. For each metric another list includes the different
tests that are carried out as well as several other information. Namely, for each
error metric the returned list includes the following components:

• setup - with generic information on the estimation task

• avgScores - a matrix with the average scores on the metric of each work-
flow on each task

• medScores - another matrix with information like the previous one, but
instead of the average we get the median scores

• rks - a matrix with the rank positions corresponding to the average scores

• avgRksWfs - a vector with the average of the above ranks across all tasks

• t.test - a list containing information concerning paired t tests

• WilcoxonSignedRank.test - a list containing information concerning
paired Wilcoxon Signed Rank tests

• F.test - a list containing information concerning the F test

• Nemenyi.test - a list containing information concerning the post-hoc
Nemenyi test

• BonferroniDunn.test - a list containing information concerning the
post-hoc Bonferroni-Dunn test

For both the t and Wilcoxon Signed Rank tests the components contain
and array with 3 dimensions, the third dimension being the task, which means
that for each task you get a matrix of results of paired comparisons. Namely,
paired comparisons between each workflow and the baseline workflow. Each row
of the matrix contains the average (or median in the case of Wilcoxon) score
of the respective workflow, the difference between this score and the score of
the baseline workflow, and the p value associated with the hypothesis that this
difference is distributed around mean (median in Wilcoxon). Please note that
although our function calculates the results of the t test, this is not recommended
for most settings given the lack of independence of the values on each iteration
(for instance on k -fold cross validation each of the k scores is obtained with
training sets that have a string overlap).

The other 3 tests can be used in the following two settings: (i) test if there are
significant differences among any pair of workflows; and (ii) test the significance
of the differences between all workflows against a baseline. In both of these two
settings we should start by checking the results of the F test to check if we can
reject the null hypothesis that the average ranks of all workflows are equivalent.
In case this hypothesis is rejected (component rejNull of the list F.test) we
can move to the post-hoc tests. In the setup (i) we should use the Nemenyi
test to find the critical difference among ranks above which we can say that the
respective difference is statistically significant. The Nemenyi.test component
is a list with components containing this information (critical difference value,
ranking differences among all pairs of workflows, and whether these differences

24

are or not significant). Under the setup (ii) the post-hoc test that should be
used is the Bonferroni-Dunn test. In this case we just want to check if the
difference between the average rank of each workflow and that of the baseline
is or not significant (thus much less paired comparisons). The result is again
given as a list where we have information on the critical difference, the baseline
workflow name, the vector of average differences and whether these differences
are different or not.

Let us see a concrete example of using this statistical tests. Suppose we want
to apply several variants of an SVM to three classification tasks and we want to
check if there are significant differences among them. The following test carries
out the performance estimation task:

library(e1071)
data(PimaIndiansDiabetes,package='mlbench')
data(iris)
data(Glass,package="mlbench")
res <- performanceEstimation(

c(PredTask(diabetes ~ .,PimaIndiansDiabetes,"Pima"),
PredTask(Type ~ ., Glass),
PredTask(Species ~ .,iris)),

workflowVariants(learner="svm",
learner.pars=list(cost=1:5,gamma=c(0.1,0.01,0.001))),

EstimationTask(metrics="err",method=CV()))

The object res can be passed to pairedComparisons() to calculate the
tests described before:

pres <- pairedComparisons(res)

As we have several workflows being compared on different tasks we will start
by checking the results of the Friedman F test:

preserrF.test

$chi

[1] 18.575

##

$FF

[1] 1.585912

##

$critVal

[1] 0.8892237

##

$rejNull

[1] TRUE

We can see that the null hypothesis that the average ranks of the workflows
are equivalent can be rejected and thus we can proceed to the post-hoc test.
In case we wish the check the hypothesis that there are statistically significant
differences among the workflows we should proceed with a Nemenyi post-hoc
test. The results of this test can be inspected as follows:

preserrNemenyi.test

$critDif

[1] 12.38302

##

$rkDifs

svm.v1 svm.v2 svm.v3 svm.v4 svm.v5 svm.v6 svm.v7 svm.v8

svm.v1 0.0000000 1.5000000 1.0000000 1.8333333 1.5000000 0.6666667 0.8333333 0.1666667

svm.v2 1.5000000 0.0000000 0.5000000 0.3333333 0.0000000 2.1666667 2.3333333 1.3333333

25

svm.v3 1.0000000 0.5000000 0.0000000 0.8333333 0.5000000 1.6666667 1.8333333 0.8333333

svm.v4 1.8333333 0.3333333 0.8333333 0.0000000 0.3333333 2.5000000 2.6666667 1.6666667

svm.v5 1.5000000 0.0000000 0.5000000 0.3333333 0.0000000 2.1666667 2.3333333 1.3333333

svm.v6 0.6666667 2.1666667 1.6666667 2.5000000 2.1666667 0.0000000 0.1666667 0.8333333

svm.v7 0.8333333 2.3333333 1.8333333 2.6666667 2.3333333 0.1666667 0.0000000 1.0000000

svm.v8 0.1666667 1.3333333 0.8333333 1.6666667 1.3333333 0.8333333 1.0000000 0.0000000

svm.v9 1.3333333 0.1666667 0.3333333 0.5000000 0.1666667 2.0000000 2.1666667 1.1666667

svm.v10 2.8333333 1.3333333 1.8333333 1.0000000 1.3333333 3.5000000 3.6666667 2.6666667

svm.v11 7.6666667 9.1666667 8.6666667 9.5000000 9.1666667 7.0000000 6.8333333 7.8333333

svm.v12 6.6666667 8.1666667 7.6666667 8.5000000 8.1666667 6.0000000 5.8333333 6.8333333

svm.v13 2.3333333 3.8333333 3.3333333 4.1666667 3.8333333 1.6666667 1.5000000 2.5000000

svm.v14 1.0000000 2.5000000 2.0000000 2.8333333 2.5000000 0.3333333 0.1666667 1.1666667

svm.v15 1.0000000 2.5000000 2.0000000 2.8333333 2.5000000 0.3333333 0.1666667 1.1666667

svm.v9 svm.v10 svm.v11 svm.v12 svm.v13 svm.v14 svm.v15

svm.v1 1.3333333 2.833333 7.666667 6.666667 2.333333 1.0000000 1.0000000

svm.v2 0.1666667 1.333333 9.166667 8.166667 3.833333 2.5000000 2.5000000

svm.v3 0.3333333 1.833333 8.666667 7.666667 3.333333 2.0000000 2.0000000

svm.v4 0.5000000 1.000000 9.500000 8.500000 4.166667 2.8333333 2.8333333

svm.v5 0.1666667 1.333333 9.166667 8.166667 3.833333 2.5000000 2.5000000

svm.v6 2.0000000 3.500000 7.000000 6.000000 1.666667 0.3333333 0.3333333

svm.v7 2.1666667 3.666667 6.833333 5.833333 1.500000 0.1666667 0.1666667

svm.v8 1.1666667 2.666667 7.833333 6.833333 2.500000 1.1666667 1.1666667

svm.v9 0.0000000 1.500000 9.000000 8.000000 3.666667 2.3333333 2.3333333

svm.v10 1.5000000 0.000000 10.500000 9.500000 5.166667 3.8333333 3.8333333

svm.v11 9.0000000 10.500000 0.000000 1.000000 5.333333 6.6666667 6.6666667

svm.v12 8.0000000 9.500000 1.000000 0.000000 4.333333 5.6666667 5.6666667

svm.v13 3.6666667 5.166667 5.333333 4.333333 0.000000 1.3333333 1.3333333

svm.v14 2.3333333 3.833333 6.666667 5.666667 1.333333 0.0000000 0.0000000

svm.v15 2.3333333 3.833333 6.666667 5.666667 1.333333 0.0000000 0.0000000

##

$signifDifs

svm.v1 svm.v2 svm.v3 svm.v4 svm.v5 svm.v6 svm.v7 svm.v8 svm.v9 svm.v10 svm.v11

svm.v1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

svm.v2 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

svm.v3 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

svm.v4 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

svm.v5 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

svm.v6 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

svm.v7 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

svm.v8 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

svm.v9 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

svm.v10 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

svm.v11 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

svm.v12 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

svm.v13 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

svm.v14 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

svm.v15 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

svm.v12 svm.v13 svm.v14 svm.v15

svm.v1 FALSE FALSE FALSE FALSE

svm.v2 FALSE FALSE FALSE FALSE

svm.v3 FALSE FALSE FALSE FALSE

svm.v4 FALSE FALSE FALSE FALSE

svm.v5 FALSE FALSE FALSE FALSE

svm.v6 FALSE FALSE FALSE FALSE

svm.v7 FALSE FALSE FALSE FALSE

svm.v8 FALSE FALSE FALSE FALSE

svm.v9 FALSE FALSE FALSE FALSE

svm.v10 FALSE FALSE FALSE FALSE

svm.v11 FALSE FALSE FALSE FALSE

svm.v12 FALSE FALSE FALSE FALSE

svm.v13 FALSE FALSE FALSE FALSE

svm.v14 FALSE FALSE FALSE FALSE

svm.v15 FALSE FALSE FALSE FALSE

This is obviously a too extensive set of information though the conclusions
are centered in the signifDifs component. An even better alternative can
be obtained through CD diagrams, which we have implemented in function
CDdiagram.Nemenyi whose result is shown in Figure 3.

CDdiagram.Nemenyi(pres)

At the top left of the diagram you can see a horizontal line with the critical
difference for the differences between average ranks to be considered statisti-
cally significant. Then each workflow is represented by a line with origin in its
respective average rank (in the X axis). If the lines of any pair of workflows are
connected by a horizontal black line, it means that the difference between them
is not statistically significant. In the diagram of Figure 3 we can observe that
all lines are connected meaning that none of the paired differences between all
workflows can be seen as statistically significant.

26

svm.v1

svm.v2

svm.v3

svm.v4

svm.v5

svm.v8

svm.v9

svm.v10

svm.v6

svm.v7

svm.v11

svm.v12

svm.v13

svm.v14

svm.v15

Critical Difference = 12.4

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Average Rank

Figure 3: The CD diagram of the Nemenyi post-hoc test.

8 Larger Examples

The main advantage of the infra-structure we are proposing is to automate large
scale performance estimation experiments. It is on these very large setups that
the use of the infra-structure saves more time to the user. However, in these
contexts the objects resulting from the estimation process are very large and
some of the tools we have shown before for exploring the results may produce
over-cluttered output. In effect, if you have an experiment involving dozens of
predictive tasks and eventually hundreds of workflow variants being compared
on several evaluation metrics, doing a plot of the resulting object is simply not
possible as the graph will be unreadable. This section illustrates some of these
cases and presents some solutions to overcome the difficulties they bring.

Extremely large experiments may take days or weeks to complete, depend-
ing on the available hardware. In this context, it may not be wise to run the
experiments on a single call to the performanceEstimation() function because
if something goes wrong in the middle you may loose lots of work/time. Us-
ing the random number generation seeds that are available in all experimental
settings objects we can split the experiments in several calls and still ensure
that the same data folds are used in all estimation experiments. If the seeding
process is not enough due to the usage of different hardware for instance, then
you may still resort to the user supplied data splits to make sure all methods are
compared on the same data. We will see that when all experiments are finished
we will be able to merge the objects of each call into a single object as if we had
issued a single call.

Another way of improving performance on large experiments is through par-
allel computation. package performanceEstimation includes facilities to run
experiment in parallel through the existing parallel back-ends in R. The sim-
plest of options, that has the advantage of not requiring you to know anything
at all about parallel computation in R, is to call the performanceEstimation

function with a fourth parameter that will make all experiments to run in par-

27

allel on the different cores of any standard multicore computer. The following
is a simple example of achieving this effect:

library(performanceEstimation)

library(e1071)

data(Satellite,package="mlbench")

pres <- performanceEstimation(

PredTask(classes ~ .,Satellite),

Workflow(learner="svm"),

EstimationTask("err",CV()),

cluster=TRUE

)

##

##

PERFORMANCE ESTIMATION USING CROSS VALIDATION

##

** PREDICTIVE TASK :: Satellite.classes

##

++ MODEL/WORKFLOW :: svm

cvEstimates: Running in parallel with 2 worker(s)

Task for estimating err using

1 x 10 - Fold Cross Validation

Run with seed = 1234

By adding this extra parameter the lower level functions that implement the
estimation procedures (in this case cross validation but the concept is applicable
to any of the other methods), will automatically create a (local) parallel back-
end using half of the cores of your computer. On reasonably large data sets this
simple extra setting will typically lead to cut execution times by a significant
amount.

Other more complex parallel settings are also possible but they require
you to know how to create the clusters before calling our function. For in-
stance, you could create a cluster (using function makeCluster of package par-
allel) that involved several computers. The object of class cluster that re-
sults from these steps should then be sent through parameter cluster of our
performanceEstimation function so that the function can take advantage of
this parallel back-end. The following is a simple illustrative example:

library(parallel)

myclust <- makeCluster(c("localhost","192.168.2.10","192.168.2.13"),"SOCK")

library(performanceEstimation)

library(e1071)

data(Satellite,package="mlbench")

pres <- performanceEstimation(

PredTask(classes ~ .,Satellite),

Workflow(learner="svm"),

EstimationTask("err",CV()),

cluster=myclust

)

stopCluster(myclust)

Please note that there are a few assumptions on the above example, namely
concerning access of your username in localhost to the remote machines whose

28

IP’s are given. This means that the username exists on all machines and that
appropriate SSH keys have been set so that no passwords are required for ac-
cessing the remote machines.

Let us now focus on the issue of splitting a large experiment in partial calls
to performanceEstimation() and at the end merge the separate results into
a single object as if the experiments were run all together. Please note that
further efficiency gains could be achieved if some parallel setup involving dif-
ferent computers as the one described above was used. The following example
addresses several regression tasks using several workflows that are variants of
different regression algorithms. We illustrate how to create the different Pred-
Task objects programmatically, how to create the different workflow variants,
and how to call performanceEstimation() with different task/workflow com-
binations storing the intermediate objects on temporary files for later reading
and merging,

library(performanceEstimation)

library(e1071)

library(randomForest)

data(algae,package="DMwR")

DSs <- sapply(names(algae)[12:18],

function(x,names.attrs) {
f <- as.formula(paste(x,"~ ."))

PredTask(f,algae[,c(names.attrs,x)],x,copy=TRUE)

},
names(algae)[1:11])

WFs <- list()

WFs$svm <- list(learner.pars=list(cost=c(10,150,300),

gamma=c(0.01,0.001),

epsilon=c(0.1,0.05)),

pre="centralImp",post="na2central")

WFs$randomForest <- list(learner.pars=list(mtry=c(5,7),

ntree=c(500,750,1500)),

pre="centralImp")

for(d in seq_along(DSs)) {
for(w in names(WFs)) {
resObj <- paste(names(DSs)[d],w,'Res',sep='')

assign(resObj,

performanceEstimation(

DSs[d],

c(

do.call('workflowVariants',

c(list(learner=w),WFs[[w]]))

),

EstimationTask(metrics=c('mse','mae'),method=CV(nReps=3)),

cluster=TRUE)

)

save(list=resObj,file=paste(names(DSs)[d],w,'Rdata',sep='.'))

29

}
}

The above code compares 12 SVM variants with 6 random forest variants, on
7 algae blooms regression tasks, using 3 × 10−fold cross validation. Although
this is not a very large experimental comparison it still includes applying 18
different workflow variants on 7 different prediction tasks, 30 times, i.e. 3780
train+test cycles. Instead of running all these experiments on a single call to the
function performanceEstimation() (which would obviously still be possible),
we have made different calls for each workflow type (SVM and random forest)
and for each predictive task. This means that each call will run all variants
of a certain workflow on a certain predictive task. The result of each of these
calls will be assigned to an object with a name composed of the task name
and workflow learner (the resObj variable). In the end each of these objects
is saved on a file with a similar name, for future loading and results analysis.
For instance, in the end there will be a file with name “a1.svm.Rdata” which
contains an object of class ComparisonResults named a1svmRes. This object
contains the MSE and MAE estimated scores of the SVM variants on the task
of predicting the target variable “a1” (one of the seven algae in this data set).

Later on, after the above experiment has finished you can load the saved
objects back into R and moreover, join them into a single object, as shown
below:

nD <- paste('a',1:7,sep='')

nL <- c('svm','randomForest')

res <- NULL

for(d in nD) {
resD <- NULL

for(l in nL) {
load(paste(d,l,'Rdata',sep='.'))

x <- get(paste(d,l,'Res',sep=''))

resD <- if (is.null(resD)) x else mergeEstimationRes(resD,x,by='workflows')

}
res <- if (is.null(res)) resD else mergeEstimationRes(res,resD,by='tasks')

}
save(res,file='allResultsAlgae.Rdata')

The mergeEstimationRes() function when applied to objects of class Com-
parisonResults allows merging of these objects across different dimensions.
Namely, such objects have the individual scores of all experiments spread across
3 dimensions: the metrics, the workflows and the tasks. The argument by of the
mergeEstimationRes() function allows you to specify how to merge the given
objects. The most common situations are: (i) merging the results of different
workflows over the same data sets - you should use “by=’workflows’”, or (ii)
merging the results of the same workflows across different tasks - you should
use “by=’tasks’”.

The following code can be used to check that the merging was OK, and also
to illustrate a few other utility functions whose purpose should be obvious:

res

##

== Cross Validation Performance Estimation Experiment ==

30

##

Task for estimating mse,mae using

3 x 10 - Fold Cross Validation

Run with seed = 1234

##

18 workflows applied to 7 predictive tasks

taskNames(res)

[1] "a1" "a2" "a3" "a4" "a5" "a6" "a7"

workflowNames(res)

[1] "svm.v1" "svm.v2" "svm.v3" "svm.v4"

[5] "svm.v5" "svm.v6" "svm.v7" "svm.v8"

[9] "svm.v9" "svm.v10" "svm.v11" "svm.v12"

[13] "randomForest.v1" "randomForest.v2" "randomForest.v3" "randomForest.v4"

[17] "randomForest.v5" "randomForest.v6"

metricNames(res)

[1] "mse" "mae"

With such large objects the most we can do is obtaining the best scores or
rankings of the workflows:

topPerformers(res)

$a1
Workflow Estimate
mse randomForest.v3 265.374
mae randomForest.v1 11.066
##
$a2
Workflow Estimate
mse randomForest.v5 94.463
mae svm.v11 5.917
##
$a3
Workflow Estimate
mse svm.v3 44.442
mae svm.v10 3.911
##
$a4
Workflow Estimate
mse randomForest.v5 18.238
mae svm.v10 1.882
##
$a5
Workflow Estimate
mse randomForest.v1 44.415
mae svm.v7 4.037
##
$a6
Workflow Estimate
mse svm.v6 111.757
mae svm.v12 5.548
##
$a7
Workflow Estimate
mse randomForest.v3 26.208
mae svm.v10 2.383

31

rankWorkflows(res)

$a1
$a1$mse
Workflow Estimate
1 randomForest.v3 265.3743
2 randomForest.v5 265.6385
3 randomForest.v1 266.0238
4 randomForest.v6 272.3064
5 randomForest.v4 272.5888
##
$a1$mae
Workflow Estimate
1 randomForest.v1 11.06603
2 randomForest.v3 11.07444
3 randomForest.v5 11.08084
4 randomForest.v4 11.18655
5 randomForest.v2 11.19782
##
##
$a2
$a2$mse
Workflow Estimate
1 randomForest.v5 94.46308
2 randomForest.v6 94.88411
3 randomForest.v3 94.90805
4 randomForest.v1 94.95223
5 randomForest.v4 95.03046
##
$a2$mae
Workflow Estimate
1 svm.v11 5.917035
2 svm.v1 5.937923
3 svm.v10 5.940801
4 svm.v4 5.954024
5 svm.v5 5.967910
##
##
$a3
$a3$mse
Workflow Estimate
1 svm.v3 44.44234
2 svm.v2 44.54107
3 svm.v8 45.27262
4 svm.v9 45.31149
5 randomForest.v5 46.30568
##
$a3$mae
Workflow Estimate
1 svm.v10 3.911241
2 svm.v4 3.914820
3 svm.v7 3.943484
4 svm.v1 3.956006
5 svm.v5 4.006819
##
##
$a4
$a4$mse
Workflow Estimate
1 randomForest.v5 18.23780
2 randomForest.v3 18.25305
3 randomForest.v1 18.26055
4 svm.v4 18.36773
5 randomForest.v2 18.56495
##
$a4$mae
Workflow Estimate
1 svm.v10 1.881994
2 svm.v4 1.883301
3 svm.v7 1.983666
4 svm.v1 1.994250
5 svm.v11 2.022148
##
##

32

$a5
$a5$mse
Workflow Estimate
1 randomForest.v1 44.41519
2 randomForest.v3 44.43139
3 randomForest.v5 44.50338
4 randomForest.v4 45.50986
5 randomForest.v2 45.53312
##
$a5$mae
Workflow Estimate
1 svm.v7 4.036624
2 svm.v10 4.055948
3 svm.v4 4.061444
4 svm.v1 4.074267
5 svm.v5 4.077211
##
##
$a6
$a6$mse
Workflow Estimate
1 svm.v6 111.7569
2 svm.v12 113.1213
3 svm.v5 121.9274
4 svm.v11 123.1705
5 randomForest.v3 123.3406
##
$a6$mae
Workflow Estimate
1 svm.v12 5.548443
2 svm.v7 5.572169
3 svm.v6 5.587264
4 svm.v4 5.633257
5 svm.v1 5.643838
##
##
$a7
$a7$mse
Workflow Estimate
1 randomForest.v3 26.20759
2 randomForest.v5 26.21914
3 randomForest.v1 26.32753
4 randomForest.v2 26.44505
5 randomForest.v4 26.49540
##
$a7$mae
Workflow Estimate
1 svm.v10 2.382957
2 svm.v4 2.407783
3 svm.v7 2.419313
4 svm.v1 2.439576
5 svm.v6 2.439598

Notice that both topPerformers() and rankWorkflows() assume that the
evaluation metrics are to be minimized, i.e. they assume the lower the better the
scores. Still, both functions have a parameter named maxs that accepts a vector
with as many Boolean values as there are evaluation metrics being estimated,
which you may use to indicate that some particular metric is to be maximized
and not minimized (the default). So for instance, if you had an experiment where
the 1st and 3rd metrics are to be minimized, whilst the second is to be maxi-
mized, you could call these functions as rankWorkflows(resObj,maxs=c(F,T,F)).

In order to obtain further results from these large objects one usually pro-
ceeds by analyzing parts of the object, for instance focusing on a particular task
or metric, or even a subset of the workflows. To facilitate this we can use the
generic function subset() that can also be applied to objects of class Compar-
isonResults. An example of its use is given below, which results in a graph of
the performance of the different workflows in the predictive task “a1”, in terms

33

a1

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

5

10

15

20
m

ae

svm
.v1

svm
.v2

svm
.v3

svm
.v4

svm
.v5

svm
.v6

svm
.v7

svm
.v8

svm
.v9

svm
.v10

svm
.v11

svm
.v12

random
F

orest.v1

random
F

orest.v2

random
F

orest.v3

random
F

orest.v4

random
F

orest.v5

random
F

orest.v6

Alternative Workflows

D
is

tr
ib

ut
io

n
of

 S
ta

tis
tic

s
S

co
re

s

Cross Validation Performance Estimation Results

Figure 4: The MAE results for the task “a1”.

of “MAE”, which is show in Figure 4.

plot(subset(res, tasks='a1', metrics='mae'))

As before we are using the generic function plot() but this time applied to
a subset of the original object with all results. This subset is obtained using
the generic function subset() that accepts several parameters to specify the
subset we are interested on. In this case we are using the parameters tasks and
metrics to indicate that we want to analyze only the results concerning the
task “a1” and the metric “mae”. Other possibility is the parameter workflows
for indicating a subset of the workflows. Both workflows, tasks and metrics

accept as values a character string containing a regular expression that will be
used internally with the R function grep() over the vector of names of the
respective objects (names of the workflows, names of the tasks and names of
the metrics, respectively). For instance, if you want to constrain the previous
graph even further to the workflows whose name ends in “4” (absurd example
of course!), you could use the following:

plot(subset(res, tasks='a1', workflows='4$'))

If you are more familiar with the syntax of ”wildcards” you may use the R
function glob2rx() to convert to regular expressions, as show in the following
example:

34

a1

●

200

400

600

5

10

15

20

m
se

m
ae

svm
.v4

random
F

orest.v4

Alternative Workflows

D
is

tr
ib

ut
io

n
of

 S
ta

tis
tic

s
S

co
re

s

Cross Validation Performance Estimation Results

Figure 5: Illustration of the use of regular expressions in sub-setting the results
objects.

summary(subset(res, tasks='a1', workflows=glob2rx('*svm*'),metrics='mse'))

##

== Summary of a Cross Validation Performance Estimation Experiment ==

##

Task for estimating mse using

3 x 10 - Fold Cross Validation

Run with seed = 1234

##

* Predictive Tasks :: a1

* Workflows :: svm.v1, svm.v2, svm.v3, svm.v4, svm.v5, svm.v6, svm.v7, svm.v8, svm.v9, svm.v10, svm.v11, svm.v12

##

-> Task: a1

*Workflow: svm.v1

mse

avg 305.37037

std 147.62784

med 275.08382

iqr 211.22466

min 79.09407

max 605.36798

invalid 0.00000

##

*Workflow: svm.v2

mse

35

avg 349.1888

std 171.6171

med 301.5451

iqr 196.5386

min 120.9873

max 821.4265

invalid 0.0000

##

*Workflow: svm.v3

mse

avg 367.1953

std 180.4110

med 345.6525

iqr 203.3054

min 142.0827

max 915.9872

invalid 0.0000

##

*Workflow: svm.v4

mse

avg 356.54033

std 187.29360

med 326.86720

iqr 318.83908

min 82.03737

max 711.67485

invalid 0.00000

##

*Workflow: svm.v5

mse

avg 376.3833

std 235.3738

med 282.9879

iqr 308.7286

min 104.9834

max 975.8439

invalid 0.0000

##

*Workflow: svm.v6

mse

avg 396.15700

std 287.60697

med 285.41018

iqr 294.37250

min 98.40015

max 1260.52110

invalid 0.00000

##

*Workflow: svm.v7

mse

avg 304.23863

std 144.75696

med 271.52274

36

iqr 212.00615

min 78.69374

max 587.86503

invalid 0.00000

##

*Workflow: svm.v8

mse

avg 355.5680

std 176.4419

med 313.3674

iqr 190.9779

min 130.2359

max 862.8762

invalid 0.0000

##

*Workflow: svm.v9

mse

avg 375.2226

std 188.0744

med 350.1804

iqr 195.8608

min 143.0326

max 954.8950

invalid 0.0000

##

*Workflow: svm.v10

mse

avg 359.45788

std 188.57821

med 331.28706

iqr 320.80755

min 82.84897

max 721.55851

invalid 0.00000

##

*Workflow: svm.v11

mse

avg 367.1249

std 216.2313

med 282.4140

iqr 288.6100

min 101.2520

max 959.5912

invalid 0.0000

##

*Workflow: svm.v12

mse

avg 376.05576

std 244.87929

med 284.02493

iqr 278.97164

min 94.36646

max 1179.99337

37

invalid 0.00000

The following are some illustrations of the use of other available utility func-
tions.

Obtaining the scores on all iterations and metrics of a workflow on a partic-
ular task:

getScores(res, 'svm.v6','a3')

mse mae

[1,] 58.773058 4.039651

[2,] 63.420588 4.836262

[3,] 124.212723 6.629852

[4,] 20.818437 2.902345

[5,] 28.507875 3.202152

[6,] 18.424942 2.774288

[7,] 14.446194 2.509190

[8,] 54.975336 4.584341

[9,] 23.521575 2.871156

[10,] 135.025071 6.735133

[11,] 112.234104 5.328625

[12,] 81.117165 5.569711

[13,] 34.504072 3.779135

[14,] 9.790665 2.162704

[15,] 30.126166 3.476657

[16,] 58.715226 4.654773

[17,] 23.793327 3.171367

[18,] 26.480963 3.236722

[19,] 99.572929 5.928280

[20,] 27.569010 3.293526

[21,] 8.495628 2.129290

[22,] 27.933235 3.197012

[23,] 20.164491 2.850632

[24,] 72.373337 5.364697

[25,] 69.470293 4.813790

[26,] 126.075926 5.477111

[27,] 65.167023 5.459279

[28,] 9.437532 2.299811

[29,] 22.696736 3.511973

[30,] 90.988401 5.114133

Getting the summary of the results of a particular workflow on a predictive
task :

estimationSummary(res,'svm.v3', 'a7')

mse mae

avg 30.516360 3.156927

std 29.265924 1.213391

med 23.096086 3.016725

iqr 31.305352 1.053218

min 3.083724 1.393694

max 141.576530 7.615879

invalid 0.000000 0.000000

Finally, the metricsSummary() function allows you to apply any summary
function (defaulting to mean()) to the iterations estimates. The following cal-
culates the median of the results of the SVMs on the task “a1”,

38

metricsSummary(subset(res, workflows=glob2rx('*svm*'), tasks='a1'),

summary='median')

$a1

svm.v1 svm.v2 svm.v3 svm.v4 svm.v5 svm.v6 svm.v7 svm.v8

mse 275.08382 301.54507 345.65254 326.86720 282.98787 285.41018 271.52274 313.36744

mae 11.93685 12.65768 13.78127 12.85777 12.21762 12.10388 11.82759 12.89971

svm.v9 svm.v10 svm.v11 svm.v12

mse 350.18044 331.28706 282.41397 284.02493

mae 13.67427 12.87902 12.13263 12.10956

9 Conclusions

We have presented package performanceEstimation that aims at being a gen-
eral package for estimating and comparing the performance of any approach to
any predictive task in R. The package allows users to very easily carry out stan-
dard out-of-the-box comparative experiments between existing modeling tools
in R. However, it also allows the users to supply their own functions implement-
ing special workflows to solve tasks. This means that the package should cover
the needs of occasional users as well as advanced users that which to try and
compared their own proposed workflows.

The package performanceEstimation also includes several facilities for test-
ing the statistical significance of the observed differences, namely implementing
the current state of the art in this subject as described in [Dem06], including
CD diagrams for both the Nemenyi and Bonferroni-Dunn post-hoc tests.

Finally, we have provided a few illustrations of how to use package performanceEstimation
for larger experiments, namely taking advantage of parallel computation that is
available in R.

References

[BFOS84] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Statistics/Probability Series. Wadsworth &
Brooks/Cole Advanced Books & Software, 1984.

[CBHK02] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer.
Smote: Synthetic minority over-sampling technique. JAIR, 16:321–
357, 2002.

[Dem06] J. Demsar. Statistical comparisons of classifiers over multiple data
sets. Journal of Machine Learning Research, 7:1–30, 2006.

[Elk01] Charles Elkan. The foundations of cost-sensitive learning. In Pro-
ceedings of the 7th International Joint Conference on Artificial In-
telligence (IJCAI’2001), 2001.

[MDH+12] David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weinges-
sel, and Friedrich Leisch. e1071: Misc Functions of the Department
of Statistics (e1071), TU Wien, 2012. R package version 1.6-1.

39

[Tor10] Luis Torgo. Data Mining with R: learning with case studies. Chap-
man & Hall/CRC Press, 2010.

40

	1 Introduction
	2 Package Installation
	3 A Simple Illustrative Example
	4 Predictive Tasks
	5 Workflows and Workflow Variants
	5.1 Workflow Variants
	5.2 Generic Workflows
	5.2.1 Classification and Regression Tasks
	5.2.2 Time Series Tasks

	5.3 User-defined Workflows

	6 Estimation Tasks
	6.1 Performance Metrics
	6.2 User-defined Performance Metrics
	6.3 Estimation Methodologies
	6.3.1 Cross Validation
	6.3.2 Bootstrapping
	6.3.3 Holdout and Random Sub-sampling
	6.3.4 Leave One Out Cross Validation
	6.3.5 Monte Carlo Experiments

	7 Statistical Significance of Differences
	8 Larger Examples
	9 Conclusions

