inst/shinyApp/server_funcs/niche_layers_extract.R

source("server_funcs/data_gbif.R",local = TRUE)
source("server_funcs/data_user.R",local=TRUE)
# Reactive to extract values of niche layers

define_M_raster <- reactive({

  if(!is.null(myPolygon()) && !is.null(rasterLayers())){
    M_raster <- crop(rasterLayers(),myPolygon())
    M_raster <- mask(M_raster,myPolygon())
    return(M_raster)
  }
  else
    return(NULL)

})

# Select a geograpghic dataset

data_to_extract <- reactive({
  if(input$datasetM == "gbif_dat" && !is.null(data_gbif()))
    return(data_gbif()[,c(input$xLongitudeGBIF,input$yLatitudeGBIF)])
  if(input$datasetM == "updata" && !is.null(data_user_clean()))
    return(data_user_clean()[,c(input$xLongitudeUser,input$yLatitudeUser)])
  else
    return(NULL)
})

occ_extract_from_mask <- reactive({
  input$run_extract
  isolate({
    if(input$run_extract){
      if(!is.null(define_M_raster()) && !is.null(data_to_extract())){
        data <- data.frame(extract(define_M_raster(),
                                   data_to_extract(),na.rm=FALSE))
        xy_data_index <- which(!is.na(data[,1]))
        xy_data <- data_to_extract()[xy_data_index,]
        data_env_xy  <- data.frame(data, data_to_extract())
        data_env_xy <- na.omit(data_env_xy)
        data <- na.omit(data)
        return(list(data=data,xy_data=xy_data,xy_data_index=xy_data_index,data_env_xy=data_env_xy))
      }
      else
        return(NULL)
    }
  })
  return(NULL)
})

occ_extract <- reactive({
  input$run_extract
  isolate({
    if(input$run_extract){
      if(!is.null(data_to_extract()) && !is.null(rasterLayers())){
        #data <- data.frame(extract(rasterLayers(),
        #                           data_to_extract(),na.rm=FALSE),
        #                   data_to_extract())
        data <- data.frame(extract(rasterLayers(),
                                   data_to_extract()))
        data <- na.omit(data)
        return(data)
      }
      else
        return(NULL)
    }
  })
  return(NULL)
})




data_extraction <- reactive({
  if(input$extracted_area == "all_area" && !is.null(occ_extract()))
    return(occ_extract())
  if(input$extracted_area == "polygon_of_M" && !is.null(occ_extract_from_mask()))
    return(occ_extract_from_mask()$data)
  else
    return(NULL)
})



output$dataM <- renderDataTable({

  if(is.null(rasterLayers())) {
    message <- "Load niche layers in AppSettings section"
    data_niche <- data.frame(No_Data = message)
    return(data_niche)
  }
  else if(!is.null(rasterLayers()) && input$extracted_area == "all_area"){
    if(input$datasetM == "gbif_dat" && is.null(data_gbif())){
      message <- "You need to have GBIF data! Search GBIF data in section: Data -> GBIF data"
      data_niche <- data.frame(No_Data = message)
      return(data_niche)
    }
    if(input$datasetM == "updata" && is.null(data_user_clean())){
      message <- "You need to upload your occurrence data! Upload your data in section: Data -> User data"
      data_niche <- data.frame(No_Data = message)
      return(data_niche)
    }
  }
  else if(input$extracted_area == "polygon_of_M" && is.null(define_M_raster())){
    menssage <- "You need to define your polygon of M in section: Data -> Dynamic map -> Define a polygon of M"
    data_niche <- data.frame(No_Data = message)
    return(data_niche)
  }
  else if(input$extracted_area == "polygon_of_M" && !is.null(define_M_raster())){
    if(input$datasetM == "gbif_dat" && is.null(data_gbif())){
      message <- "You need to have GBIF data! Search GBIF data in section: Data -> GBIF data"
      data_niche <- data.frame(No_Data = message)
      return(data_niche)
    }
    if(input$datasetM == "updata" && is.null(data_user_clean())){
      message <- "You need to upload your occurrence data! Upload your data in section: Data -> User data"
      data_niche <- data.frame(No_Data = message)
      return(data_niche)
    }
  }
  if((!is.null(data_user_clean()) || data_gbif()) && (!is.null(define_M_raster()) || !is.null(rasterLayers())) && is.null(data_extraction())){
    message <- "Press Go!!! button"
    data_niche <- data.frame(Press_Go = message)
    return(data_niche)
  }
  if(!is.null(data_extraction())){
    data_niche <- data_extraction()
    return(data_niche)
  }


},
options = list(aLengthMenu = c(5, 10, 25,
                               50, 100, 500),
               iDisplayLength = 10))


output$niche_layers <- renderPlot({

  if(!is.null(rasterLayers())){
    plot(rasterLayers()[[1]])
  }
  else{
    messages <- "Load niche layers"
    x <- -10:10
    y <- x
    plot(x,y,type="n", xlab="No Data", ylab="No data",cex=2)
    text(0,0,messages,cex=3 )
  }

})


#output$raster_sample <- renderPlot({

#  if(!is.null(rasterLayers())){
#    if(input$extracted_area == "all_area" && !is.null(data_to_extract())){
#      plot(rasterLayers()[[1]])
#    }

#    if(input$extracted_area == "polygon_of_M" && !is.null(data_to_extract()) && !is.null(define_M_raster())){
#      plot(define_M_raster()[[1]])
#    }
#    if(input$extracted_area == "polygon_of_M" && !is.null(data_to_extract()) && is.null(define_M_raster())){
#      messages <- "Define M area using dynamic Map"
#      x <- -10:10
#      y <- x
#      plot(x,y,type="n", xlab="No Data", ylab="No data")
#      text(0,0,messages,cex=3 )
#    }

#  }
#  else{
#    messages <- "Load niche layers in App settings section"
#    x <- -10:10
#    y <- x
#    plot(x,y,type="n", xlab="No Data", ylab="No data")
#    text(0,0,messages,cex=3 )
#  }

#})

# Download data table with niche vars values

output$downloadExtraction <- downloadHandler(
  filename = function() return(paste0(input$genus,"_",input$species,"niche_data.csv")),
  content = function(file) {
    if(!is.null(data_extraction())){
      ## Leyendo los datos de la especie e escriendolos en un .csv
      write.csv(data_extraction(),file,row.names = FALSE)
    }
  }
)


# Download clipped rasters

tar_clippedRas <- reactive({
  if(!is.null(define_M_raster())){
    tempfilePath <- tempfile(pattern = "clippedRaster")
    temdirRas <- dir.create(tempfilePath)
    raslayers <- define_M_raster()
    layernames <- names(raslayers)
    filenames <- paste0(tempfilePath,"/",layernames,".asc")
    sapply(1:length(filenames), function(x) writeRaster(raslayers[[x]],filename = filenames[x],overwrite=TRUE))
    tarRas <- paste0(tempfilePath,"/clippedRaster.tar")
    utils::tar(tarRas,tempfilePath,compression='gzip')
    return(tarRas)
  }
  else
    return(NULL)
})

output$downClippedR <- downloadHandler(
  filename = function() return(paste0(input$genus,"_",input$species,"M_rasters.tar")),
  content = function(file) {
    if(!is.null(tar_clippedRas())){
      ## Leyendo los datos de la especie e escriendolos en un .csv
      file.copy(tar_clippedRas(), file)
    }
  }
)
luismurao/nichetoolbox documentation built on May 21, 2017, 3:42 p.m.