
ShrinkBayes: Bayesian analysis of

high-dimensional omics data

Mark A. van de Wiel

October 31, 2016

Department of Epidemiology & Biostatistics
VU University Medical Center
Amsterdam, The Netherlands

mark.vdwiel@vumc.nl

Contents

1 Overview 2

2 Pre-amble: Accounting for different library sizes/normalization
factors 4

3 Example 0, Easy Start: ShrinkBayes in one line 5

4 Example 1: Gaussian simulation setting, 2-group setting 7
4.1 Workflow . 7
4.2 Results when using the correct prior 12

5 Example 2: Gaussian setting, HT RNAi data 14

6 Example 3: CAGE data 24

7 Practical considerations to guide choices in the analysis work-
flow 32
7.1 Trying ShrinkBayes on your data 32
7.2 To shrink or not to shrink? 33
7.3 Paired data . 34
7.4 Choice of the prior . 34

1

7.5 When should I use mixtdisp=TRUE? 35
7.6 Shape of the nonparametric prior: logconcave, unimodal, sym-

metric . 35
7.7 What threshold to use for testing (lfdr and BFDR computa-

tion)? . 36
7.8 How to deal with extremely large data sets? 36
7.9 Tips for speeding up computations 36

8 Future topics 37

9 Appendix 38
9.1 Code used for generating the simulated data set ‘datsim’ . . . 38
9.2 Code for simulated example 38
9.3 Code for HTRNAi example 38
9.4 Code for CAGE example . 39
9.5 Code for running ShrinkBayes on very large data sets: sim-

ulated example . 40
9.6 Code used for True FDR in simulation setting 42

1 Overview

ShrinkBayes is a package for Bayesian (differential) expression analysis of
high-dimensional -omics data. It applies Emprical Bayes-type multi-parameter
shrinkage to improve parameter estimation and inference. You should use
it because it

• Is very flexible in terms of study designs

• Allows for random effects in a GLM setting

• Applies to many different data types, including Gaussian (e.g. miRNA,
mRNA arrays, HT RNAi), counts (e.g. label-free proteomics) and
zero-inflated counts (e.g. AGE, RNAseq)

• Was demonstrated to be more reproducible and powerful than other
methods in small-sample settings (??)

• Is much more computationally efficient than MCMC, because it makes
use of INLA (www.r-inla.org; (?))

• Provides (Bayesian) False Discovery Rates.

2

This document provides an overview on the usage of the ShrinkBayes
package. For more detailed information on the methodology, performance
and assumptions we refer to the articles (???). As example data we at-
tached four data sets: 1) Simulated Gaussian data with 1500 rows and 284
columns; 2) HTRNAi, a data set with 960 rows and 6 columns containing
Gaussian normalized HT RNAi data; 3); and mirseqnorm, a data set con-
taining miRNA sequencing-based counts with 2,060 rows (features) and 55
columns (samples); and 4) CAGEdata1000, with 10,000 rows (features) and
25 columns (samples) containing normalized sequencing-based counts.

The simulated data set is used to illustrate the following aspects of ShrinkBayes:

• Ease of use in plain 2-group setting

• Proof of concept: ShrinkBayes correctly identifies the prior effect size
distribution

• How to use a parametric mixture prior with point mass at zero?

The HT RNAi data set is used to illustrate the following aspects of ShrinkBayes:

• Analysis of Gaussian data (hence this example also covers most mi-
croarray data)

• Use of an offset in your model

• How to shrink multiple fixed effects and error variance?

• Use of a non-symmetric prior

The CAGE data set is used to illustrate the following aspects of ShrinkBayes:

• Analysis of (zero-inflated) count data (example also covers other se-
quencing data like RNAseq)

• Dealing with a complex design, including nuisance factors and blocked
individuals

• Modeling and analysing random effects

• Estimation and inference for multiple pair-wise comparisons

• Joint shrinkage of fixed effect, random effect and overdispersion

3

• Using a mixture distribution on overdispersion

The miRNA sequencing data set was added to illustrate simple, one-line use
of ShrinkBayes. In addition, it illustrates K-sample testing for a factor with
more than 2 levels.

All examples use a fairly similar same work flow:

1. Load the normalized data

2. Set up the model and study design, possibly including multiple com-
parisons

3. Apply joint iterative procedure to shrink multiple parameters

4. Fit models for all data rows using the shrunken priors

5. Combine posteriors when multiple models have been applied to the
same data (e.g. Poisson and Negative Binomial)

6. Update priors for crucial parameters to non-parametric or mixture
forms

7. Update posteriors accordingly using the fitted non-parametric or mix-
ture priors

8. Compute summaries like posterior means (parameter estimates) or
posterior tail probabilities (local false discovery rates)

9. Compute Bayesian False Discovery Rates

For the analysis of the HTRNAi and CAGE data sets we focus on illus-
trating the settings as used in (?, HT RNAi data) and (?, CAGE data), but
will also discuss alternatives when appropriate.

2 Pre-amble: Accounting for different library sizes/normalization
factors

ShrinkBayes does NOT automatically account for different library sizes. For
normalization it relies on other packeges. Below some code for pseudo count
data to compute normalization factors with edgeR that also account for
differences in library sizes.

4

> library(edgeR)

> DGE=DGEList(counts, group=groups)

> libsize <- colSums(counts)

> DGEnorm <- calcNormFactors(DGE)

> normfac0 <- DGEnorm$samples[,3]

> rellibsize <- libsize/exp(mean(log(libsize)))

> normfac = normfac0*rellibsize

There are two solutions for normalization.

1. Create normalized (pseudo-)counts from the p× n counts matrix and
apply ShrinkBayes to those:

> pseudocounts <- round(sweep(counts, 2, normfac, "/"))

2. Use the original counts, but include sample specific offsets that relate
to the library sizes in the model (e.g. a simple model with an intercept
and a group variable, see further on for other examples):

> myoffsets <- log(normfac)

> form <- ~ 1 + group + offset(myoffsets)

We prefer the second solution, although the first may sometimes be con-
venient when the data is also used for other purposes than testing (e.g.
classification or prediction), which would also require normalized data.

3 Example 0, Easy Start: ShrinkBayes in one line

Please try the following example.

> library(ShrinkBayes)

> data(mirseqnorm)

> head(mirseqnorm[,1:10])

M1 M10 M11 M12_1 M12_2 M13 M14_1 M14_2 M15 M16

1 0 0 0 0 0 3 0 0 2 0

2 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0

5 1 0 0 0 0 0 0 3 1 0

6 0 0 0 0 0 0 0 0 0 0

5

Loads the package and the data.

> data(designmirseq)

> head(designmirseq)

PM indiv timepos chemo organ1 organ2 organ3 organ

1 M 1 1 1 0 1 0 organ2

2 M 10 0 0 0 0 1 organ3

3 M 11 0 0 0 0 0 organ4

4 M 12 1 0 0 0 0 organ4

5 M 12 1 0 0 1 0 organ2

6 M 13 1 0 0 1 0 organ2

Show the design of the study.

> PM <- designmirseq$PM

> indiv <- designmirseq$indiv

> timepos <- designmirseq$timepos

> chemo <- designmirseq$chemo

> organ <- designmirseq$organ

Retrieve relevant covariates

> form = ~ 1 + PM + timepos + chemo + organ + f(indiv)

Specifies the regression formula. Note that f() is used to define a random
effect. Then, a one-line application of ShrinkBayes is (but try the one below
for a quick test):

> SBmir <- ShrinkBayesWrap(mirseqnorm,form)

This performs shrinkage and testing for the FIRST variable in form, PM.
If testing is desired for a different variable this may be specified in the
paramtotest argument (see below). The result is a list object with for
slots. The FDRs slot contains the FDRs for the PM factor, the local fdrs and
the shrunken effect size estimate (P-M). The nsigsFDR01 slot contains the
number of significant results at (B)FDR threshold 0.1. The other two slots
contain information on the (shrunken) priors.

For a relatively quick try, try the following:

6

> SBmirsmall <- ShrinkBayesWrap(mirseqnorm[1:100,],form,

+ ntag=c(25,50),maxiter=2,priorsimple=TRUE, approx0=TRUE)

Here, using a smaller data set, less iterations, a simpler prior (pointmass-
Gauss) and an approximation of the null-model speeds up the computations.

If you wish to shrink additional parameters as well (can render more powerful
testing, in particular when sample size is small (?)), you may do so by
specifying these:

> SBmirshrink <- ShrinkBayesWrap(mirseqnorm,form,

+ shrinkaddfixed=c("organ","chemo","timepos"))

A (marginal)-likelihood-ratio-based test for organ (which has four levels) is
the default for factor variables with more than 2 levels:

> SBmirorgan <- ShrinkBayesWrap(mirseqnorm,form,paramtotest="organ")

What does ShrinkBayesWrap() do? It is just a wrapper for functions that
are explained in more detail in the remainder of this document. These
functions are ShrinkSeq() and ShrinkGauss() for simultaneous shrinkage
(Count and Gaussian data, respectively); FitShrinkAll() for applying INLA

to all data rows; MixtureUpdatePrior(), MixtureUpdatePosterior() and
BFUpdatePosterior() for computation of a prior with point mass and pos-
teriors; SummaryTable() for computing summaries (including FDRs) from
the posteriors.

For a factor variable with more than 2 levels, it performs (marginal)-likelihood-
ratio-based K-sample testing by default, but multiple comparisons can be
performed by use of either of the arguments allcontrasts or multvscon-

trol. See also ?ShrinkBayesWrap for another example.

4 Example 1: Gaussian simulation setting, 2-group
setting

4.1 Workflow

The example data set contains 1500 rows (features) and 8 samples (divided
in two groups of 4). The first 1000 represent non-differential features (so
proportion non-differential equals 2/3), the last 500 represent differential

7

features with mean group difference simulated from a N(0, 1) distribution.
The noise is simulated from a N(0, 0.52) distribution. See Section 9.1 for
the code used to simulate the data.

> library(ShrinkBayes)

> data(datsim)

> head(datsim[,1:5])

[,1] [,2] [,3] [,4] [,5]

[1,] -0.04191917 0.070037754 0.8198383 -0.35443640 0.1128436

[2,] -1.01134453 -0.235494343 -0.3670104 -0.53177746 0.3673819

[3,] 0.19333209 -0.008211341 -0.1544538 0.29010757 -0.1937141

[4,] -1.03722998 -0.391160705 -0.2452836 -0.98763216 -0.8069727

[5,] -0.40153756 0.040684804 0.5219447 -0.09762872 0.1809304

[6,] -0.82760690 0.706451170 1.0892873 0.55709375 0.3335727

Loads the package and the data.

> ncpus2use <- 10

Sets the number of cpus to use for parallel computations. Combined with
the ncpus=ncpus2use argument in the functions this fixes the number of
cpus used. Note that for all functions the default is 2. If ncpus2use is larger
than the actual number of available cpus, computations will still run.

> group <- factor(c(rep("group1",4),c(rep("group2",4))))

Defines covariate “group”, corresponding to the columns of the datsim data.

> form = y ~ 1 + group

Define the model formula. Specification should be according to the inla

formula argument.

> shrinksimul <- ShrinkGauss(form=form, dat=datsim,shrinkfixed="group",

+ ncpus=ncpus2use)

8

This function simultaneously shrinks the fixed effect parameter ‘group’
and the Gaussian error standard deviation (default), using standard para-
metric priors. The function may take considerable computing time. See
Section 5 for discussion on a) some arguments of the ShrinkGauss function
b) retrieving various types of information from shrinksimul.

> fitg <- FitAllShrink(form,dat=datsim,fams="gaussian",shrinksimul,

+ ncpus=ncpus2use)

Applies inla to compute posteriors for all data rows using the priors stored
in shrinksimul. IMPORTANT: for better performance in the next function
(MixtureUpdatePrior), the prior for the shrinkfixed parameter as used
in ShrinkGauss (here: “treatment”) is by default dispersed by a factor 10
(hence a vaguer prior is used), see Section 5.

> form0 = y ~ 1

Defines the null-model formula. Specification should be according to the
inla formula argument.

> fitg0 <- FitAllShrink(form0,dat=datsim,fams="gaussian",shrinksimul,

+ ncpus=ncpus2use)

Fits the null-model. Only needed when inference for a point null hypothesis
is desired. Please note that, in principle, the several UpdatePrior functions
also work without a null-fit; Then, the Savage-Dickey approximation is used
to approximate the marginal likelihood under the null- model. This saves
computing time, but can be less accurate.

Below we estimate a mixture prior, namely a mixture of a zero point
mass and two non-central Normals: π(β) = (1− p0) ∗ pmin ∗N(β;−µ, τ2) +
p0δ0 + (1− p0) ∗ (1− pmin) ∗N(β;µ, τ2). Note that this prior is misspecified
w.r.t. to true effect size distribution (pointmass + central Normal).

> mixtprior2gauss <-

+ MixtureUpdatePrior(fitall=fitg,fitall0=fitg0, modus="mixt",

+ shrinkpara="group",ncpus=ncpus2use)

> bestfinal <- mixtprior2gauss$allpara[1,]

> bestfinal

pmin p0 mu stdev sumloglik

0.3666667 0.6333333 0.1197843 0.9280651 1011.0476812

9

> mixtpostshr <- MixtureUpdatePosterior(fitg,mixtprior2gauss,fitg0,

+ ncpus=ncpus2use)

Update the posteriors of the "group" parameter for all data rows using the
mixture prior.

> lfdrless <- SummaryWrap(mixtpostshr, thr = 0, direction="lesser")

> lfdrgreat <- SummaryWrap(mixtpostshr, thr = 0, direction="greater")

Compute posterior (tail-)probabilities under shrinkage prior. Here lfdr-

less = P (βgroup ≤ 0|Y) and lfdrgreat = P (βgroup ≥ 0|Y) are computed.
These can be interpreted as local false discovery rates corresponding to
a one-sided interval null-hypothesis H0 : βgroup ≤ 0 (for lfdrless) or
H0 : βgroup ≥ 0 (for lfdrgreat). See (?). Practically: if for a given feature
min(lfdrless,lfdrgreat) is small, it means that the posterior is largely
concentrated on either side of zero, wich indicates that the group effect is
different from 0. This fact is used when computing our two-sided version of
Bayesian False Dicovery Rate (??, BFDR):

> BFDRs <- BFDR(lfdrless,lfdrgreat)

Computes two-sided BFDRs. These can be interpreted as false discovery
rates (in a cumulative sense) when one would select all features with smaller
or equal null-probabilities (lfdrs) than the given feature.

> plot(BFDRs)

10

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0 500 1000 1500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Index

B
F

D
R

s

Plots the BFDRs against the feature index. Here we know that the first 1000
are generated from the null-hypotheses, the latter 500 from the alternative
(see Section 9.1).

The computations above use a misspecified prior for βgroup (because it is ac-
tually simulated from (1), the assumed model). Although it is fairly common
to assume a fixed specific model in statistical computations, it is worthwhile
to explore alternatives. ShrinkBayes offers two: 1) use a variety of para-
metric mixture models and study the robustness of the results against the
parametric shape of the prior; 2) use a nonparametric prior. 1) is explored
in the next Section, 2) in Sections 5 and 6.

In a simulation setting we can check the accuracy of the BFDR esti-
mation to estimate the true FDR with the function fdrcomp (see Section
9.6):

11

> res <- fdrcomp(1:1000,BFDRs)

> plot(res,type="l")

> abline(a=0,b=1,col="red")

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

TrueFDR

E
st

F
D

R

4.2 Results when using the correct prior

> prior1Normalp0 <- MixtureUpdatePrior(fitall=fitg,fitall=fitg0,

+ modus="gauss", shrinkpara="group",ncpus=ncpus2use)

Finds the (approximately) best mixture prior of the form

π(β) = p0δ0 + (1− p0)N(β; 0, τ2), (1)

so a mixture of zero-point mass (group effect equals zero) and a central
Normal distribution. Grid search is used to maximize total log marginal

12

likelihood. Inclusion of a point mass may be attractive for the purpose of
statistical inference (?).

> bestfinal <- prior1Normalp0$allpara[1,]

> bestfinal

p0 stdev sumloglik

0.6000000 0.8460445 1010.0916223

The best values of the parameters. Note the good performance of the algo-
rithm: the true values are p0 = 0.67 and stdev = 1. Let us now recompute
the posteriors, lfdrs and BFDRs of βgroup under this prior:

> post1Normalp0shr <- MixtureUpdatePosterior(fitg,prior1Normalp0,fitg0,

+ ncpus=ncpus2use)

> lfdrless2 <- SummaryWrap(post1Normalp0shr, thr = 0, direction="lesser")

> lfdrgreat2 <- SummaryWrap(post1Normalp0shr, thr = 0, direction="greater")

> BFDRs2 <- BFDR(lfdrless2,lfdrgreat2)

We plot the BFDRS as computed under the misspecified prior (see pre-
vious Section; BFDRs) and under the correct prior (BFDRs2).

> plot(BFDRs,BFDRs2,type="l")

13

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

BFDRs

B
F

D
R

s2

We observe they are very similar in this setting, hence the inference results
are robust against misspecification of the prior in this setting.

5 Example 2: Gaussian setting, HT RNAi data

> library(ShrinkBayes)

> data(HTRNAi)

> head(HTRNAi)

s1 s2 s3 s4 s5 s6

siRNA1 0.54317601 0.1953989 0.3883244 -0.03428689 0.6049207 -0.1790861

siRNA2 0.63533948 0.5057837 0.3928841 0.25338641 0.6935488 0.4185978

siRNA3 -0.91691878 -1.0838714 -0.6184123 -1.31090945 -0.2335765 -1.0377135

14

siRNA4 -0.74854963 -0.7619164 -0.2532474 -1.06233410 -0.5529374 -0.8189226

siRNA5 0.01110011 -0.6777245 0.3444957 -0.78924657 0.3554455 -0.8163929

siRNA6 0.59106644 0.5445666 0.4172433 0.31420140 0.6532168 0.5535300

Loads the package and the data

> ncpus2use <- 10

Sets the number of cpus to use for parallel computations.

> treatment <- factor(rep(c("untreated","treated"),3))

> assay <- factor(rep(1:3,each=2))

Defines covariates “treatment” and “assay”, corresponding to the columns of
the HTRNAi data.

> offsetvalue <- c(0.1703984, -0.6958495, 0.3079694, -0.5582785,

+ 0.2251210, -0.6411269)

Defines an offset (often not needed). In this particular example, the offsets
are computed from HT RNAi data with a positive control which is run
for the same 6 screens. The offsets are posterior mean estimates from the
same model as below (from many technical repeats per screen), but without
shrinkage (because only one feature, the positive control, is involved). Use
of an offset guarantees that the parameter estimates can be intepreted as
deviation from the positive control.

> form = y ~ offset(offsetvalue) + 1 + treatment + assay

Define the model formula. Specification should be according to the inla

formula argument.

> shrinksimul <- ShrinkGauss(form=form, dat=HTRNAi,shrinkfixed="treatment",

+ shrinkaddfixed="assay", fixedmeanzero = FALSE, ncpus=ncpus2use)

This function simultaneously shrinks the fixed effect parameters ‘treat-
ment’ and ‘assay’. Note that in this particular setting it is likely that many
treatment parameters are negative (since this concerns an effect with respect
to a positive control; see (?)). Therefore, we set fixedmeanzero = FALSE,

15

so that we do not fix the mean of the prior to zero (which is the logical de-
fault in many microarray settings). In addition, the Gaussian error standard
deviation is shrunken by default (shrinksigma = TRUE). This function may
take considerable computing time.

The argument shrinkfixed contains the parameter of primary inter-
est (“treatment”), while shrinkaddfixed contains an additional (nuisance)
parameter (“assay”). Currently, maximally two fixed effect parameters can
be shrunken simultaneously using Gaussian priors. ShrinkGauss has many
additional arguments. We discuss a few crucial ones.

• ntag: Consecutive number of features used for shrinking. Important
for computing time. Default is ntag = c(100, 200, 500, 1000).
You may consider using smaller values (e.g. ntag = c(50, 100)) for
trying out, but we recommend to use at least 500 for final computa-
tions.

• maxiter: Maximum number of iteration per value of ntag. Important
for computing time. Default is 10. Consider using a smaller value for
trying out, e.g. maxiter = 3, but use at least maxiter=10 for final
computations.

• fixedmeanzero (addfixedmeanzero): Should the Gaussian mean of
the shrinkfixed (shrinkaddfixed) prior be fixed to 0? Set to FALSE

when this is undesirable/unrealistic.

> shrinksimul$pmlist

$mufixed

[1] -0.4220818

$precfixed

[1] 15.22325

$muaddfixed

[1] 0

$precaddfixed

[1] 88.85478

$shaperand

16

[1] 0.001

$raterand

[1] 0.001

$mixp

[1] 0.2 0.8

$shapeerr

[1] 14.80563

$rateerr

[1] 0.9963235

Shows the final parameter values. Note that the second parameter of Gaus-
sian priors is a precision (1/variance) and the second parameter of Gamma
priors (here, used for the precision of the error variance) is a rate.

> round(shrinksimul$paraall[,1:6],3)

mufixed precfixed muaddfixed precaddfixed shaperand raterand

paraall 0.000 0.100 0 0.100 0.001 0.001

paranew -0.399 5.064 0 6.797 0.001 0.001

paranew -0.405 7.761 0 13.148 0.001 0.001

paranew -0.408 9.568 0 19.455 0.001 0.001

paranew -0.407 10.626 0 25.331 0.001 0.001

paranew -0.406 11.233 0 31.306 0.001 0.001

paranew -0.406 11.657 0 36.715 0.001 0.001

paranew -0.404 11.705 0 42.435 0.001 0.001

paranew -0.406 11.478 0 47.533 0.001 0.001

paranew -0.402 11.127 0 52.698 0.001 0.001

paranew -0.406 10.904 0 57.092 0.001 0.001

paranew -0.431 12.320 0 62.505 0.001 0.001

paranew -0.444 13.260 0 66.303 0.001 0.001

paranew -0.447 14.138 0 70.433 0.001 0.001

paranew -0.447 14.877 0 74.258 0.001 0.001

paranew -0.423 14.761 0 78.835 0.001 0.001

paranew -0.420 15.117 0 82.779 0.001 0.001

paranew -0.422 15.223 0 88.855 0.001 0.001

> round(shrinksimul$paraall[,-(1:6)],3)

17

mixp1 mixp2 shapeerr rateerr

paraall 0.2 0.8 0.001 0.001 NA

paranew 0.2 0.8 3.258 0.312 100

paranew 0.2 0.8 7.238 0.787 100

paranew 0.2 0.8 9.331 0.960 100

paranew 0.2 0.8 10.760 1.006 100

paranew 0.2 0.8 11.647 1.007 100

paranew 0.2 0.8 12.578 1.011 100

paranew 0.2 0.8 13.350 1.012 100

paranew 0.2 0.8 13.944 1.005 100

paranew 0.2 0.8 14.487 1.004 100

paranew 0.2 0.8 15.039 1.005 100

paranew 0.2 0.8 14.440 0.982 200

paranew 0.2 0.8 13.957 0.974 200

paranew 0.2 0.8 13.713 0.975 200

paranew 0.2 0.8 13.309 0.970 200

paranew 0.2 0.8 13.961 0.992 500

paranew 0.2 0.8 14.388 0.994 500

paranew 0.2 0.8 14.806 0.996 960

Shows the consecutive estimates of the parameters. Note that parameters
not involved in the shrinkage are not updated. The last columns shows the
number of features used to estimate the parameters of the priors.

> fitg <- FitAllShrink(form,dat=HTRNAi,fams="gaussian",shrinksimul,

+ ncpus=ncpus2use)

Applies inla to compute posteriors for all data rows using the priors stored
in shrinksimul. IMPORTANT: the prior for the shrinkfixed parameter
as used in ShrinkGauss (here: “treatment”) is by default dispersed by a fac-
tor 10 (hence a vaguer prior is used). This is done, because we experienced
that it leads to better results when updating this prior to a nonparamet-
ric one (using NonParaUpdatePrior) or a mixture one (using MixtureUp-

datePrior). If you do not want to disperse the prior of the shrinkfixed

parameter, use the argument dispersefixed=1. Similar function arguments
are available to disperse the prior of the shrinkaddfixed parameter or
(when available) the random effects parameter. Additional arguments you
may want to consider are showupdate (default: FALSE): when set to TRUE

progression updates are shown for each updateby finished features. How-
ever, this may slow down the computations somewhat.

18

NOTE: you may see a lot of warnings from the call to inla. These usually
occur for difficult data rows; this may either lead to missing results (which
the subsequent function can cope with) or very wide posteriors. In both
cases, it is unlikely that this leads to false positives or false negatives.

The result of FitAllShrink is a 2-component list. The first component
$res is a list of inla-output objects of length nr = nrow(dat), the number
of data rows. When nr is large, the result may be a large object. Hence,
for memory-efficiency not all inla-output is included. See the function ar-
guments effoutput, keepmargrand and keepmarghyper for other options.
The second component $priors contains the input prior parameters.

> fit1 <- fitg$res[[1]]

Retrieves the inla-output for the first feature. This contains a lot of infor-
mation, including marginal posteriors of all relevant parameters in numeric
format; summaries of the posteriors; model fit summaries; input arguments
used by inla. Below we illustrate a few useful outputs.

> fit1$summary.fixed

mean sd 0.025quant 0.5quant 0.975quant kld

(Intercept) 0.758 0.192 0.378 0.758 1.1300 7.40e-32

treatmentuntreated -0.353 0.203 -0.752 -0.353 0.0463 0.00e+00

assay2 -0.247 0.223 -0.683 -0.248 0.1950 1.23e-32

assay3 -0.142 0.223 -0.578 -0.143 0.2990 0.00e+00

Shows the summaries of the fixed effect parameters.

> marginal <- fit1$marginals.fixed$treatmentuntreated

> plot(marginal)

19

● ● ● ● ●●● ●●●●●●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●
●●●●●●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●●●●●● ● ● ● ● ● ●

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

Plots the marginal posterior (Use type="l" to obtain a curve instead of
points). Note that this is obtained under a prior the variance of which is
dispersed with a factor 10.

> fit1$summary.hyper

mean sd 0.025quant 0.5quant 0.975quant

Precision for the Gaussian observations 15.6 3.88 9.12 15.2 24.3

Shows the summaries of the hyper-parameters (parameters not involved in
the regression formula). In this case only the error variance is a hyper-
parameter.

> fit1$mlik

20

[,1]

log marginal-likelihood (integration) -6.7

log marginal-likelihood (Gaussian) -6.7

Estimation of the marginal likelihood. Can be used to compare models.

> npprior <- NonParaUpdatePrior(fitall=fitg,modus="fixed",

+ shrinkpara="treatment",ncpus=ncpus2use, includeP0=FALSE,

+ allow2modes=FALSE, symmetric=FALSE, logconcave=TRUE)

Updates the (dispersed) Gaussian prior for "treatment" to a smooth, log-
concave non-parametric one. Note here we specifically allow an asymmetric
prior (default is symmetric=TRUE). Also, in this example, we do not include
a point mass on zero, because the main mass of effect sizes may well be
concentrated elsewhere. This is context specific. See ? for explanation.
Dropping the symmetry requirement may cause the non-parametric prior
to become more unstable (its tails may become too dependent on specific
data). Adding logconcave=TRUE, which forces a log-concave prior (?), aids
in increasing the stability.

Let us now compare the resulting non-parametric prior with the original
Gaussian one.

> plot(npprior$priornew,type="l")

> supp <- npprior$priornew[,1]

> points(supp,dnorm(supp,mean=shrinksimul$pmlist$mufixed,

+ sd = 1/sqrt(shrinksimul$pmlist$precfixed)),type="l",col="red",lty=2)

21

−1.5 −1.0 −0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

nx

ny

We
observe a clear asymmetry and a difference in the tails.

> nppostshr <- NonParaUpdatePosterior(fitg,npprior,ncpus=ncpus2use)

Updates the posteriors of the "treatment" parameter using the new, non-
parametric prior.

> lfdr <- SummaryWrap(nppostshr, thr = 0, direction="lesser")

Here, we compute one-sided posterior null-probabilities of the kind lfdr =
P (βtreat ≤ 0|Y), which can be interpreted as a local false discovery rate.
One-sided, because, when comparing with a positive control, we are mainly
interested in siRNAs with larger (hence positive) effects w.r.t. the positive
control, so lfdr should be small.

22

> BFDRs <- BFDR(lfdr)

Computes Bayesian False Discovery Rates (?) from the lfdrs.

> whsig <- which(BFDRs <= 0.1)

> whsig

[1] 176 608 749

> BFDRs[whsig]

[1] 0.07658634 0.01426447 0.03969088

> layout(matrix(1:3,nrow=1))

> plot(nppostshr[[whsig[1]]][[1]][[1]],xlim=c(-0.5,0.7),type="l")

> abline(v=0,lty=2)

> plot(nppostshr[[whsig[2]]][[1]][[1]],xlim=c(-0.5,0.7),type="l")

> abline(v=0,lty=2)

> plot(nppostshr[[whsig[3]]][[1]][[1]],xlim=c(-0.5,0.7),type="l")

> abline(v=0,lty=2)

23

−0.4 0.0 0.4

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

−0.4 0.0 0.4

0
1

2
3

4

x

y

−0.4 0.0 0.4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

x

y

Displays the posteriors of the significant siRNAs. Note that use of a Gaus-
sian prior rather than a non-parametric one would have rendered only the
second siRNA (id: 608) to be significant (see (?)).

6 Example 3: CAGE data

The CAGE data set below consists of normalized sequencing (count) data
for 10,000 tag clusters and 25 brain samples. For illustration purposes we
limit ourselves to the analysis of the first 1,000 tag clusters. Details on the
analysis are available in ? which present the results on 10,000 tag clusters.

> library(ShrinkBayes)

> data(CAGEdata10000)

24

> CAGEdata <- CAGEdata10000

> CAGEdata <- CAGEdata[1:1000,]

> CAGEdata[1:2,]

raw.0325_Frontal raw.0325_Hippocampus raw.0325_Putamen raw.0325_Temporal raw.034_Caudate raw.034_Frontal raw.034_Hippocampus raw.034_Temporal

Tag.1 0 0 0 0 17 0 0 0

Tag.2 0 0 0 0 4 0 0 0

raw.05217_Caudate raw.05217_Frontal raw.05217_Hippocampus raw.05217_Putamen raw.05217_Temporal raw.05269_Caudate raw.05269_Frontal

Tag.1 76 68 73 49 57 0 0

Tag.2 10 7 4 8 6 0 0

raw.05269_Hippocampus raw.05269_Putamen raw.05269_Temporal raw.07319_Frontal raw.07319_hippocampus raw.07319_Temporal raw.96373_Caudate

Tag.1 35 0 0 0 0 0 31

Tag.2 8 0 0 0 0 0 12

raw.96373_Putamen raw.97266_Caudate raw.97266_Putamen

Tag.1 49 31 55

Tag.2 12 7 6

Load ShrinkBayes, the data, select the first 1,000 rows and display the first
2.

> data(design_brain)

> design_brain

pers batch groupfac

1 1 0 2

2 1 0 3

3 1 0 4

4 1 0 5

5 2 1 1

6 2 0 2

7 2 0 3

8 2 0 5

9 3 1 1

10 3 1 2

11 3 1 3

12 3 1 4

13 3 1 5

14 4 0 1

15 4 0 2

16 4 1 3

17 4 0 4

25

18 4 0 5

19 5 0 2

20 5 0 3

21 5 0 5

22 6 1 1

23 6 1 4

24 7 1 1

25 7 1 4

Loads the design of the brain study.

> pers <- design_brain$pers #persons

> batch <-design_brain$batch #batch

> groupfac <- design_brain$groupfac #group (= brain region)

Retrieves covariates from the design matrix.

> ncpus2use <- 10

Number of cpus to use in (parallel) computations. Note that this should
be specified separately for functions that allow parallel computations by the
ncpus = argument.

> groupfac <- BaselineDef("groupfac",baselinegroup="1")

The brain regions, coded by variable groupfac, are our main parameters of
interest. As the design displays, we are in a multiple (>2) group setting.
The function BaselineDef allows the user to set the baseline group, rather
than let INLA decide. Here, the second argument is the character equivalent
of the current level of the desired baseline group.

By default only comparisons with the baseline are included in the compu-
tations of posteriors. Use the following convenience function to create the
other pair-wise comparisons for a given factor when this contains 3 or more
levels (groups):

> lincombvec <- AllComp("groupfac")

> form = y ~ 1 + groupfac + batch + f(pers,model="iid")

Define the model formula. Specification should be according to the inla

formula argument. Here batch and group are fixed effects, pers is a random
effect.

26

> shrinksimul <- ShrinkSeq(form=form, dat=CAGEdata,shrinkfixed="groupfac",

+ shrinkrandom="pers",mixtdisp=TRUE,ncpus=ncpus2use)

Simultaneous shrinkage for groupfac and pers. In addition, the negative
binomial overdispersion is shrunken by default (see shrinkdisp argument).
Here, batch is not shrunken, because the effect of batch may not be uniform
accross the range of counts. In the example we allow a mixture prior for
overdispersion (mixtdisp=TRUE). This increases the computing time by a
factor 2, because inla has to fit the model under zero overdispersion (lead-
ing to a (zero-inflated) Poisson instead of a zero-inflated negative binomial.)
ShrinkSeq default uses the zero-inflated negative binomial to fit sequenc-
ing data (see (?) for argumentation) by setting fams="zinb". However,
other options are fams="nb", fams="poisson", fams="zip" for Negative
Binomial, Poisson and zero-inflated Poisson, respectively. In case one opts
for fams="nb" it may be wise to explicitly account for the relationship be-
tween the mean and the overdispersion when shrinking (see e.g. (?)). In
ShrinkSeq this is effectuated by setting curvedisp=TRUE. See the discussion
on the ShrinkGauss function in Section 5 for other important arguments of
the function.

> shrinksimul$pmlist$mixp

[1] 0.08376754 0.91623246

This returns the prior mass on the point mass of the mixture prior for
overdispersion. If this would be close to zero (which we have observed in
some other RNAseq applications), then it is sufficient to fit the model on all
data for the (zero-inflated) Negative Binomial only. Otherwise, fits under
the (zero-inflated) Poisson are also needed, like for this data set.

> fitzip <- FitAllShrink(form,dat=CAGEdata,fams="zip",shrinksimul,

+ ncpus=ncpus2use,lincomb=lincombvec)

Fits the model on all data using the priors resulting from ShrinkSeq and
Zero-Inflated-Poisson likelihood. Note that, as discussed in Section 5, by
default the variance of the prior for the main parameter of interest (here
"groupfac") is increased by a factor 10. The lincomb=lincombvec argu-
ment specifies that the function should also generate posteriors for the linear
combinations defined above.

> fitzinb <- FitAllShrink(form,dat=CAGEdata,fams="zinb",shrinksimul,

+ ncpus=ncpus2use,lincomb=lincombvec)

27

As above, but now under the Zero-Inflated-Negative Binomial likelihood
(using the shrunken Gaussian prior for log-overdispersion).

> cp <- CombinePosteriors(fitzip,fitzinb,shrinksimul,para="groupfac",

+ ncpus=ncpus2use)

Combines the posteriors of the two fits (as outlined in the Suppl. Mat. of
(?)) for the "groupfac" parameters and the linear combinations (included
by default). Hence, cp contains the posteriors of all pairwise comparisons
under 1) a shrunken mixture prior for overdispersion; 2) a shrunken Gamma
prior for the precision of pers; and 3) a (deliberately too wide) Gaussian
prior for "groupfac". The latter will now be updated to a non-parametric
prior.

> npprior <- NonParaUpdatePrior(fitall=cp,modus="fixed", shrinkpara="groupfac",

+ shrinklc=names(lincombvec),lincombs=lincombvec,ncpus=ncpus2use, maxiter=3,

+ includeP0 = FALSE, symmetric = TRUE, allow2modes=FALSE)

Find one common nonparametric prior for all group-wise differences, includ-
ing the contrasts defined in lincombvec. Note that if shrinklc contains
multiple contrasts, it is assumed they have the same mean and variance. If
you do not want to include those contrasts (e.g. because you are focusing
on comparison with the baseline group), set shrinklc=NULL (default). Note
that we advise to increase maxiter for obtaining final results (default =
15). Important other arguments and defaults of the NonParaUpdatePrior

function:

• includeP0 = TRUE: Include a point mass?

• symmetric = TRUE: Force the prior to be symmetric?

• unimodal = TRUE: Force the prior to be unimodal?

• allow2modes = FALSE: Can the prior have one mode on both the pos-
tive and negative halfplane (so unimodal on both half planes)? Only
relevant when unimodal = TRUE.

• logconcave = FALSE: Force the prior to be logconcave?

Note that here we use the default setting for the shape of prior (symmetric,
unimodal, but not necessarily logconcave). See also Section 7 for guidelines
on how to use these settings.

Let’s have a look at the prior.

28

> theprior <- npprior$priornew

> plot(theprior,type="l",xlim=c(-2.5,2.5))

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nx

ny

> quantiles <- inla.qmarginal(p=c(0.05,0.25,0.5,0.75,0.95), theprior)

> quantiles

[1] -0.92262861 -0.30907530 -0.04458935 0.21989661 0.83344991

> expect <- inla.emarginal(function(x) x, theprior)

> expect

[1] -0.03955675

> sd <- sqrt(inla.emarginal(function(x) x^2, theprior) - expect^2)

> sd

29

[1] 0.7232569

Computes quantiles, the mean and standard deviation of the prior. These
functions can also be applied to posteriors. See ?inla.qmarginal and
?inla.emarginal in your R-console for other options.

> nppostshr <- NonParaUpdatePosterior(cp,npprior,ncpus=ncpus2use)

Updates the posteriors of the "groupfac" parameters and the contrasts
involved in lincombvec using the new, non-parametric prior.

> lfdr <- SummaryWrap(nppostshr, thr = log(1.5))

Compute two-sided local fdrs which equals lfdr = min(P (βcontrast ≤ thr|Y), P (βcontrast ≥
−thr|Y)). The above lfdr introduces a desirable conservativeness with re-
spect to an alternative posterior null-probability: lfdr’ = P (−thr ≤ βcontrast ≤
thr|Y). The latter, lfdr’, can not properly deal with wide posteriors that have
a lot of probability mass outside (−thr, thr). See ? for further discussion.
The threshold thr = log(1.5) implies that we only wish to detect effects
larger than 1.5 fold (see Section 7).

> BFDRs <- BFDR(lfdr)

> head(BFDRs)

groupfac2 groupfac3 groupfac4 groupfac5 groupfac3mingroupfac2 groupfac4mingroupfac2 groupfac4mingroupfac3 groupfac5mingroupfac2

[1,] 0.7594013 0.7955304 0.8160210 0.8068468 0.8221437 0.8219757 0.8028797 0.8285386

[2,] 0.8278324 0.8494276 0.8345920 0.8368664 0.8288337 0.7963121 0.6930053 0.8182273

[3,] 0.8425993 0.1897167 0.7670844 0.8221101 0.1704118 0.5758759 0.8536606 0.7021078

[4,] 0.4884483 0.7963692 0.6165695 0.7589679 0.8493518 0.8409730 0.7933942 0.8438888

[5,] 0.8526093 0.8588785 0.8460374 0.8623392 0.8268282 0.7577407 0.6675664 0.8408789

[6,] 0.8008360 0.7607720 0.6496556 0.7627002 0.7307867 0.6133084 0.6748121 0.7305368

groupfac5mingroupfac3 groupfac5mingroupfac4

[1,] 0.8275530 0.8296039

[2,] 0.7975236 0.8355238

[3,] 0.8588213 0.8292926

[4,] 0.8152289 0.8396536

[5,] 0.8300127 0.8504250

[6,] 0.7452639 0.7984073

Compute (two-sided) Bayesian FDRs for all comparisons. Hence, a matrix
is returned which features as rows and comparisons as columns.

30

> BFDRmult <- BFDR(lfdr,multcomp=TRUE)

Compute (two-sided) Bayesian FDRs for testing the hypothesis: all com-
parisons parameters belong to the null domain. This allows one to perform
K-group inference (like in ANOVA or an F-test) using a multiple comparison
set-up. Hence, BFDRmult may be used to discover features showing at least
one difference between groups (but not where: for that BFDRs is needed.)

> wh <- which(BFDRmult <= 0.1)

> length(wh)

[1] 43

> whcomp <- which(BFDRs[wh,]<= 0.1,arr.ind=TRUE)

> plot(cbind(whcomp[,2],wh[whcomp[,1]]),type="p",xlab="Comparison",

+ ylab="Feature index",xaxt="n")

> axis(1,at=1:10,labels=c("1-2","1-3","1-4","1-5","2-3","2-4","3-4",

+ "2-5","3-5","4-5"))

31

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

0
20

0
40

0
60

0
80

0
10

00

Comparison

F
ea

tu
re

 in
de

x

1−2 1−3 1−4 1−5 2−3 2−4 3−4 2−5 3−5 4−5

A plot that visualizes which features are significant for at least one compar-
ison (hence according to BFDRmult) and which comparison is significant for
those features (according to BFDRs).

7 Practical considerations to guide choices in the
analysis workflow

7.1 Trying ShrinkBayes on your data

Analysing data should not contain too many ‘trial-and-error’ steps, so ideally
data analysis settings should be fixed a priori. Nevertheless, in particular in
complex data analysis problems, it is often unavoidable that the researcher
needs to try a few settings to understand what are sensible choices for the

32

data at hand. We advise to use a limited number of randomly selected fea-
tures to try the various functions and setting in ShrinkBayes. The random
selection is important, because many data sets contain structures on the
features (e.g. genomic ordering). In our experience, 1,000 features is a safe
choice for the algorithms to work well, for the results to be representative
of the entire data set and computing times to be reasonable (in particular
when processing on a multi-core computer).

We realize that the flexibility created by the many options in some of the
functions in ShrinkBayes comes at a price: the (unexperienced) user may
find it hard to make informed choices. Naturally, we assist the user on this
issue by setting sensible defaults. Here, we share practical tips that should
further aid in practical use of ShrinkBayes.

7.2 To shrink or not to shrink?

Shrinkage of a parameter can be beneficial in three ways. In small sample set-
tings dispersion parameters are generally difficult to estimate. Hence, there
is reasonable consensus on the benefit of shrinking dispersion-related pa-
rameters. This is effectuated in the functions ShrinkSeq and ShrinkGauss

by the defaults shrinkdisp = TRUE and shrinksigma = TRUE, respectively.
For the main parameter of interest we argued that shrinkage is important to
come to proper inference in a Bayesian multiple testing setting (?). Hence,
we strongly advise to shrink this parameter or these parameters as well.

For additional nuisance parameters in the regression the potential beneficial
effect is more subtle. In ? we showed that shrinkage of the nuisance parame-
ter "assay" was very beneficial for more powerful inference for the parameter
of interest "treatment". The rationale for this was that in this experiment
"assay", which had three levels, consumed 2 ‘degrees-of-freedom’ (dof)1,
which is a lot in a 2*3 experiment. We found that the fitted prior for "as-

say" was very concentrated around zero, which basically renders more dof
for the "treatment" parameter. Hence, in very small experiments with a
nuisance parameter that has relatively many levels, it may certainly pay
off to shrink the nuisance parameter. However, sometimes the effect of
the nuisance parameter is not uniform across the range of data, even after
normalization. This may be assessed by plotting a (naive) estimate of the
nuisance parameter against the mean of the data (mean(log(x+1)) for when
x is a count). In the HTRNAi example, Section 5, the batch effect was

1between quotes, because, strictly, dof is not a Bayesian concept

33

not uniform and so we decided not to shrink this. Since the zero-inflation
parameter is also not uniform over the log-count range, we recommend to
not shrink it either (hence shrinkp0 = FALSE is the default in ShrinkSeq;
see also ?).

7.3 Paired data

Paired data may be modeled in various ways. Currently, we recommend
to model directly the data (so not the pairwise differences) and account
for the pairing by use of a random effect, similar to the use of pers in
the CAGE example of Section 6. So for 5 individuals with a paired mea-
surement this would be coded as: indiv = c(1,1,2,2,3,3,4,4,5,5) and
f(indiv,model="iid"), assuming the columns of the data are ordered with
respect to individuals.

When the pairs represent individuals, we suggest replacing the (zero-inflated)
Negative Binomial by a (zero-inflated) Poisson for count data, by setting
fams="zip" (or fams="poisson") in the functions ShrinkSeq and FitAll-

Shrink. The reason for this is that the between individual variation (which
is the motivation for overdispersing the Poisson) is now accounted for by the
Gaussian random effect in the regression.

7.4 Choice of the prior

ShrinkBayes has many options for the prior, in particular when it concerns
the main parameter of interest. In general, we recommend to use

• MixtureUpdatePrior with modus = "mixt" for testing the point null-
hypothesis H0 : β = 0. Extensive simulations have shown that this
leads to rather accurate (B)FDR estimation for a wide variety of
true effect size distributions, while rendering good power properties.
Alternative: NonParaUpdatePrior with includeP0 = TRUE, a non-
parametric prior with point mass. Slightly worse (B)FDR estimation.
Possibly somewhat more power than MixtureUpdatePrior for very
small sample size (e.g. N = 2 ∗ 3).

• NonParaUpdatePrior with includeP0 = FALSE when testing an in-
terval null-hypothesis, e.g. using thresholds like thr = log(1.25),

thr = log(1.5), thr = log(2) (or the negatives hereof). The non-
parametric prior provides the best adaptivity to the data. For example,
in Section 5 we illustrate the benefit of using a nonparametric prior

34

over a Gaussian one in a small-sample setting. Also we have shown in
simulation settings that a nonparametric prior can accurately recover
smooth parametric shapes (?).

• ShrinkSeq or ShrinkGauss using the option excludefornull in com-
bination with BFUpdatePosterior to test two nested models that dif-
fer by more than one variable.

We, and others (?), noted that for some data sets, the point mass on zero in
mixture priors is estimated to be very low, irrespective of the shape of con-
tinuous components. In such cases we advise to use the default lower bound
0.5 on the point mass component p0lower = 0.5 in NonParaUpdatePrior

to force some shrinkage towards 0, in combination with using a threshold
thr different from zero in SummaryWrap .

7.5 When should I use mixtdisp=TRUE?

The ShrinkSeq function allows one to use a mixture of Poisson and Negative
Binomial likelihood (or zero-inflated versions thereof) by setting mixtdisp=TRUE.
When the experiment involves sequencing data on independent individuals
our experience (and the consensus in the community) is that overdisper-
sion (to allow more variance between samples than the Poisson does) is
really needed, so for such studies we expect that the majority of features
prefers the Negative Binomial, so in such a case we recommend to simply
use the default mixtdisp=FALSE. However, if the experiment involves cell
lines (hence less variability is likely) or when the between-individual vari-
ation is modeled by a random effect at the regression level (see Section 6)
we advise to use mixtdisp=TRUE. If the estimate of the mixture proportion
(shrinksimul$pmlist$mixp, where shrinksimul is the object containing
the output of ShrinkSeq) is close to 0, proceed with (zero-inflated) Negative
Binomial. If it is close to 1, proceed with (zero-inflated) Poisson. Otherwise,
fit both and use the CombinePosteriors function (see Section 6).

7.6 Shape of the nonparametric prior: logconcave, unimodal,
symmetric

In the function NonParaPriorUpdate the options logconcave, unimodal

and symmetric allow one to increase stability of the prior. Setting all these
options to FALSE renders the completely non-restrictive setting, where all
TRUE gives the most restrictive setting. We recommend to use either of the

35

following two settings: a) The default: logconcave = FALSE, unimodal =

TRUE and symmetric = TRUE, where enforcing symmetry and unimodality
creates stability for the tails of the prior. b) logconcave = TRUE, unimodal
= TRUE and symmetric = FALSE, if asymmetry is considered realistic; the
log-concavity restriction may then help to stabilize both tails of the prior.

7.7 What threshold to use for testing (lfdr and BFDR com-
putation)?

In the function SummaryWrap the threshold argument thr is important for
determining the significant features by lfdr or BFDR. To a large extent the
discussion on minimal relevant effect size (which is what thr represents,
on log level) is a biological one. The more thr deviates from 0 the less
features are detected, but those that are detected are likely to be (relatively)
relevant. We advise to be careful with using thr = 0 in the two-sided, non-
parametric setting, because if the truth is sparse (or near-sparse: many very
small effects) it may render too many false positives. In general, we believe
it is wise to report results for at least two values of thr, e.g.thr=log(1.25)
and thr=log(2), representing 1.25 and 2-fold changes.

7.8 How to deal with extremely large data sets?

For very large data sets, the internal memory of the computer may not
suffice to perform the fits for all features in one call. Hence, we advise to
split the three major tasks of ShrinkBayes: a) Finding the correct priors;
b) Computing the posteriors under those priors; and c) Inference (lfdr and
BFDR computations). a) is usually accurate enough when using a random
subset of features of size, say 10,000. For those computations, internal mem-
ory is usually sufficient. Then, for the computation of posteriors we advise
to do this in batches and save intermediate results on the hard-disk. Then,
perform inference on summaries of those posteriors using SummaryWrap and
BFDR.

An example is included in the Appendix, Section 9.5.

7.9 Tips for speeding up computations

Several functions in ShrinkBayes may take a while to run. Therefore, we
parallelized some of the most time-consuming computations, so your com-
putations will obviously be faster when increasing the number of avalable.
Note that computing time increases linearly with the number of features.

36

Some more tips for speeding up computations:

• When starting to use ShrinkBayes clean up the R-memory: either by
re-starting R or by using rm(list=ls());gc();.

• If you use Windows OS: consider switching to Linux. Due to the
intensive interaction of inla with the hard-disk, we experienced that
use of Linux instead of Windows (on the same computer) may speed
up computations by a factor of 3-4.

8 Future topics

We plan to extent ShrinkBayes in many directions.

• Other data types, in particular fractional data (on 0-1 scale), e.g.
methylation

• Longitudinal settings (multiple measurements over time)

• Modelling and reporting joint posteriors rather than only marginal
ones

• K-sample inference (other than through multiple comparisons, which
was illustrated in the Section 6)

• “Small” multivariate GLM settings. Where “small” means: non-high-
dimensional (at the level of the model)

• “Large” multivariate penalized regression settings

• Inference with point mass on zero and nonparametric continuous com-
ponent

• Using Bayes’ Factors for inference in a multiplicity setting

• ...

If you are interested in any of these topics, or when you feel these are essential
for your application, please let us know. We might have progressed and be
able to share (preliminary) code with you.

37

9 Appendix

9.1 Code used for generating the simulated data set ‘datsim’

> #1500 rows (siRNAs), 8 samples, pi0 = 2/3

> datsim1 <- matrix(rnorm(8000,mean=0,sd=0.5),nrow=1000)

> meanvec <- matrix(rep(rnorm(500,0,1),4),nrow=500)

> datsim2 <- cbind(matrix(rnorm(2000,mean=0,sd=0.5),nrow=500),

+ matrix(rnorm(2000,mean=0,sd=0.5),nrow=500) + meanvec)

> datsim <- rbind(datsim1,datsim2)

9.2 Code for simulated example

> library(ShrinkBayes)

> data(datsim)

> ncpus2use <- 10

> group <- factor(c(rep("group1",4),c(rep("group2",4))))

> form = y ~ 1 + group

> form0 = y ~ 1

> shrinksimul <- ShrinkGauss(form=form, dat=datsim,shrinkfixed="group",

+ ncpus=ncpus2use)

> fitg <- FitAllShrink(form,dat=datsim,fams="gaussian",shrinksimul,

+ ncpus=ncpus2use)

> fitg0 <- FitAllShrink(form0,dat=datsim,fams="gaussian",shrinksimul,

+ ncpus=ncpus2use)

> mixtprior2gauss <- MixtureUpdatePrior(fitall=fitg,fitall0=fitg0,

+ modus="mixt", shrinkpara="group",ncpus=ncpus2use)

> mixtpostshr <- MixtureUpdatePosterior(fitg,mixtprior2gauss,fitg0,

+ ncpus=ncpus2use)

> lfdrless <- SummaryWrap(mixtpostshr, thr = 0, direction="lesser")

> lfdrgreat <- SummaryWrap(mixtpostshr, thr = 0, direction="greater")

> BFDRs <- BFDR(lfdrless,lfdrgreat)

9.3 Code for HTRNAi example

> library(ShrinkBayes)

> data(HTRNAi)

> ncpus2use <- 10

> treatment <- factor(rep(c("untreated","treated"),3))

> assay <- factor(rep(1:3,each=2))

> offsetvalue <- c(0.1703984, -0.6958495, 0.3079694, -0.5582785,

38

+ 0.2251210, -0.6411269)

> form = y ~ offset(offsetvalue) + 1 + treatment + assay

> shrinksimul <- ShrinkGauss(form=form, dat=HTRNAi,shrinkfixed="treatment",

+ shrinkaddfixed="assay", fixedmeanzero = FALSE, ncpus=ncpus2use)

> fitg <- FitAllShrink(form,dat=HTRNAi,fams="gaussian",shrinksimul,

+ ncpus=ncpus2use)

> npprior <- NonParaUpdatePrior(fitall=fitg,modus="fixed",

+ shrinkpara="treatment", ncpus=ncpus2use, includeP0 = FALSE,

+ logconcave=TRUE, allow2modes=FALSE)

> nppostshr <- NonParaUpdatePosterior(fitg,npprior,ncpus=ncpus2use)

> lfdr <- SummaryWrap(nppostshr, thr = 0, direction="lesser")

> BFDRs <- BFDR(lfdr)

9.4 Code for CAGE example

> data(CAGEdata10000)

> CAGEdata <- CAGEdata10000[1:1000,]

> data(design_brain)

> pers <- design_brain$pers ; batch <-design_brain$batch;

> groupfac <- design_brain$groupfac

> ncpus2use <- 10

> groupfac <- BaselineDef("groupfac",baselinegroup="1")

> lincombvec <- AllComp("groupfac")

> form = y ~ 1 + groupfac + batch + f(pers,model="iid")

> shrinksimul <- ShrinkSeq(form=form, dat=CAGEdata,shrinkfixed="groupfac",

+ shrinkrandom="pers",mixtdisp=TRUE,ncpus=ncpus2use)

> fitzip <- FitAllShrink(form,dat=CAGEdata,fams="zip",shrinksimul,

+ ncpus=ncpus2use,lincomb=lincombvec)

> fitzinb <- FitAllShrink(form,dat=CAGEdata,fams="zinb",shrinksimul,

+ ncpus=ncpus2use,lincomb=lincombvec)

> cp <- CombinePosteriors(fitzip,fitzinb,shrinksimul,para="groupfac",

+ ncpus=ncpus2use)

> npprior <- NonParaUpdatePrior(fitall=cp,modus="fixed",

+ shrinkpara="groupfac", shrinklc=TRUE,ncpus=ncpus2use, maxiter=3,

+ includeP0 = FALSE, symmetric=TRUE, logconcave=FALSE, allow2modes=FALSE)

> nppostshr <- NonParaUpdatePosterior(cp,npprior,ncpus=ncpus2use)

> lfdr <- SummaryWrap(nppostshr, thr = log(1.5))

> BFDRs <- BFDR(lfdr)

> BFDRmult <- BFDR(lfdr,multcomp=TRUE)

39

9.5 Code for running ShrinkBayes on very large data sets:
simulated example

> datsim1 <- matrix(rnorm(400000*8,mean=0,sd=0.5),nrow=400000)

> meanvec <- matrix(rep(rnorm(200000,0,1),4),nrow=200000)

> datsim2 <- cbind(matrix(rnorm(200000*4,mean=0,sd=0.5),nrow=200000),

+ matrix(rnorm(200000*4,mean=0,sd=0.5),nrow=200000) + meanvec)

> datsimlarge <- rbind(datsim1,datsim2)

> save(datsimlarge,file="datsimlarge.Rdata")

Simulates a data set with 600,000 rows, 4*2 samples, pi0 = 2/3. See Section
4.

> tuningsize <- 10000

> batchsize <- 50000

tuningsize determines the maximum number of features used in the tuning
phase of ShrinkBayes. The tuning phase determines the priors for those
parameters for which shrinkage is desired. Then, the actual fitting and
computation of posteriors for all features is performed in batches of size
’batchsize’. Results are written to the hard-disk in batches. All this to
avoid having to store many posterior distributions in the internal memory.

> whrows <- sample(1:nrow(datsimlarge),tuningsize)

> datsimtune <- datsimlarge[whrows,]

> save(datsimtune,file="datsimtune.Rdata")

> rm(datsimlarge);gc()

Creates the tuning data set on a random set of features. datsimtune is used
to fit the priors

> ncpus2use <- 6

> group <- factor(c(rep("group1",4),c(rep("group2",4))))

> form = y ~ 1 + group

> form0 = y ~ 1

> library(ShrinkBayes)

Number of cpus to use, covariate group, formula and library loading

> shrinksimul <- ShrinkGauss(form=form, dat=datsimtune,shrinkfixed="group",

+ ncpus=ncpus2use)

40

> fitg <- FitAllShrink(form,dat=datsimtune,fams="gaussian",shrinksimul,

+ ncpus=ncpus2use)

> fitg0 <- FitAllShrink(form0,dat=datsimtune,fams="gaussian",shrinksimul,

+ ncpus=ncpus2use)

> mixtprior<- MixtureUpdatePrior(fitall=fitg, fitall0=fitg0,modus="gauss",

+ shrinkpara="group",ncpus=ncpus2use)

> save(shrinksimul,mixtprior,file="priorstuned.Rdata")

Determining the priors using the exact same code as in Section 4, but now
on the tuning data set datsimtune. Now, we start with fitting on the large
data set.

> saveFits <- FALSE

Do you want to save the inla-output of the function FitShrinkAll? Note
that these are large objects that contain a lot of information, including
marginal posteriors of all parameters.

> savePosteriors <- TRUE

Do you want to save output of the update function (either MixtureUp-

datePosterior or NonParaUpdatePosterior)? This output contains the
marginal posteriors of the parameter of interest only. May still be a fairly
large object, but generally much smaller than the fit object. Usually wise to
store these in case you decide to change inference in the SummaryWrap and
BFDR functions (e.g. a different threshold).

> load("priorstuned.Rdata")

> load("datsimlarge.Rdata")

Load the R-objects that contain the information on the priors and the large
data set.

> nr <- nrow(datsimlarge)

> nloop <- ceiling(nr/batchsize)

> lfdrless <- c()

> lfdrgreat <- c()

Determines the number of features, the number of loops and initializes the
lfdrs

41

> for(k in 1:nloop){

+ if(k>1) load("datsimlarge.Rdata")

+ rangek <- ((k-1)*batchsize+1):min(nr,k*batchsize)

+ datk <- datsimlarge[rangek,]

+ print(paste("Computing posteriors for features",rangek[1],"to",

+ rangek[length(rangek)]))

+ rm(datsimlarge);gc()

+ fitgk <- FitAllShrink(form,dat=datk,fams="gaussian",shrinksimul,

+ ncpus=ncpus2use)

+ fitg0k <- FitAllShrink(form0,dat=datk,fams="gaussian",shrinksimul,

+ ncpus=ncpus2use)

+ if(saveFits) {

+ save(fitgk,file=paste("fitg_batch_",k,".Rdata",sep=""))

+ save(fitg0k,file=paste("fitg0_batch_",k,".Rdata",sep=""))

+ }

+ mixtpostshrk <- MixtureUpdatePosterior(fitgk,mixtprior,fitg0k,

+ ncpus=ncpus2use)

+ if(savePosteriors) save(mixtpostshrk,

+ file=paste("mixtpostshr_batch_",k,".Rdata",sep=""))

+ lfdrlessk <- SummaryWrap(mixtpostshrk, thr = 0, direction="lesser")

+ lfdrgreatk <- SummaryWrap(mixtpostshrk, thr = 0, direction="greater")

+ lfdrless <- rbind(lfdrless,lfdrlessk)

+ lfdrgreat <- rbind(lfdrgreat,lfdrgreatk)

+ save(lfdrless,lfdrgreat,file="lfdrs.Rdata")

+ rm(fitgk,mixtpostshr);gc()

+ }

The loop that determines posteriors for all features per batch of size batch-

size. FitAllShrink determines the posteriors under the initial priors stored
in simulshrink, MixtureUpdatePosterior updates these posteriors for the
mixtprior on "group". Then lfdrs are computed for batch k and all lfdrs
are stored in lfdrless and lfdrgreat.

> BFDRs <- BFDR(lfdrless,lfdrgreat)

Finally, BFDRs are computed. Note that these need the input of all features,
so BFDR cannot be computed inside the loop above.

9.6 Code used for True FDR in simulation setting

negatives: Indices of true negatives , sig: BFDR measure of significance.

42

fdrcomp <- function(negatives,sig){

#True FDR = FP/N_P. Est FDR = \sum (p0s*I) / N_P

sortsig <- sort(sig,index.return=T)

sortind <- sortsig$ix

n <- length(sig)

arr <- rep(0,n)

wh <- which(sapply(sortind,is.element,set=negatives))

arr[wh] <- 1

FP <- cumsum(arr)

TrueFDR <- FP/1:n

EstFDR <- sortsig$x

return(cbind(TrueFDR,EstFDR))

}

43

	Overview
	Pre-amble: Accounting for different library sizes/normalization factors
	Example 0, Easy Start: ShrinkBayes in one line
	Example 1: Gaussian simulation setting, 2-group setting
	Workflow
	Results when using the correct prior

	Example 2: Gaussian setting, HT RNAi data
	Example 3: CAGE data
	Practical considerations to guide choices in the analysis workflow
	Trying ShrinkBayes on your data
	To shrink or not to shrink?
	Paired data
	Choice of the prior
	When should I use mixtdisp=TRUE?
	Shape of the nonparametric prior: logconcave, unimodal, symmetric
	What threshold to use for testing (lfdr and BFDR computation)?
	How to deal with extremely large data sets?
	Tips for speeding up computations

	Future topics
	Appendix
	Code used for generating the simulated data set `datsim'
	Code for simulated example
	Code for HTRNAi example
	Code for CAGE example
	Code for running ShrinkBayes on very large data sets: simulated example
	Code used for True FDR in simulation setting

