
The NoiseFiltersR Package:

Label Noise Preprocessing in R

Pablo Morales1, Julián Luengo1, Luís P.F. Garcia2, Ana C. Lorena3, André C.P.L.F. de

Carvalho2, and Francisco Herrera1

1Department of Computer Science and Arti�cial Intelligence, University of Granada,

Granada, 18071, Spain
2Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,

Trabalhador São-carlense Av. 400, São Carlos, São Paulo 13560-970, Brazil
3Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Talim St. 330,

São José dos Campos, São Paulo 12231-280, Brazil

Abstract

In Data Mining, the value of extracted knowledge is directly related to the quality of used data,
which turns data preprocessing into one of the most important steps of the whole learning process.
In classi�cation problems, label noise refers to the incorrect labelling of training instances, and is
known to be a very disruptive feature of data. In this work we present the NoiseFiltersR package.
It contains the �rst extensive R implementation of classical and state-of-the-art label noise �lters,
which are the most common technique for preprocessing label noise. All these algorithms are appro-
priately documented and referenced, they can be called in a R-user-friendly manner, and their results
are uni�ed by means of the "filter" class, which also bene�ts from adapted print and summary

methods.

1 Introduction

In last years, Data Mining has been faced with increasingly challenging problems in terms of the
nature of available data. Not only its size, but also its imperfections and varied shapes, are providing
the researchers with plenty of di�erent scenarios to be addressed. Consequently, Data Preprocessing
[4] has become an important part of the KDD (Knowledge Discovery from Databases) process, and
related-software development is also essential to provide practitioners with the adequate tools.

Data Preprocessing intends to appropriately process the collected data so that subsequent learn-
ing algorithms can extract maximum knowledge out of it. It is known to be one of the most time-
consuming steps in the whole KDD process. There exist several aspects involved in data preprocessing,
like feature selection or dealing with missing values and noisy data. Feature selection aims at extract-
ing the most relevant attributes for the learning step, thus reducing the complexity of models and
the computing time. The treatment of missing values is also essential to keep as much information
as possible in data Finally, noisy data refers to values that are either incorrect or clearly far from the
general underlying distribution.

All these tasks have associated software available. For instance, the KEEL tool [1] contains a
broad collection of data preprocessing algorithms, which covers all the aforementioned topics . There
are other popular options for these tasks, like SPSS or SAS for missing values, and WEKA [18] or
RapidMiner for feature selection. Apart from these, there exist many other general-purpose Data
Mining software suites like R, KNIME or Python.

Regarding the R statistical software, there are plenty of packages available in the Comprehensive
R Archive Network (CRAN) repository to address preprocessing tasks. For example, MICE [16] and
Amelia [6] are very popular packages for handling missing values, whereas caret [9] or FSelector
[13] provide a wide range of techniques for feature selection. There are also general-purpose packages
for decting outliers and anomalies, like mvoutlier [2].

However, to the best of our knowledge, CRAN lacks an extensive collection of classi�cation-
oriented label noise preprocessing algorithms, some of which are among the most in�uential prepro-
cessing techniques [5]. This is the gap we intend to �ll with the release of theNoiseFiltersR package,
whose taxonomy is inspired on the recent survey on label noise by B. Frénay and M. Verleysen [3].

1

Yet, it should be noted that there are other packages that include some isolated implementations
of label noise �lters, since they are sometimes needed as auxiliary functions. It is the case of the
unbalanced [11] package, which deals with imbalanced classi�cation. It contains basic versions of
classical �lters such as Tomek-Links [15] or ENN [17], which are tipically applied after oversampling
an imbalanced dataset (which is the main purpose of the unbalanced package).

In the following Section 2 we brie�y introduce the problem of classi�cation with label noise, as well
as the most popular techniques to overcome it. In Section 3 we show how to use the NoiseFiltersR
package to apply these techniques in a uni�ed and R-user-friendly manner. Finally, Section 4 presents
a general overview of this work. Once the package is loaded, the source and R code for this vignette
is directly available from R with the command browseVignettes.

2 Label noise preprocessing

Data collection and preparation processes are usually subject to errors in Data Mining applications
[19]. Consequently, real-world datasets are commonly a�ected by imperfections or noise. In classi�ca-
tion problems, this noise negatively a�ects the learning process of classi�ers, leading to less accurate
predictions, excessively complex models, and longer computation time.

Two di�erent types of noise are usually distinguished in the specialized literature for classi�cation:
attribute noise and label noise (which is also called class noise) [20]. The former refers to imperfections
in the attributes of the training dataset, whereas the latter relates to errors in the labels used for
classi�cation. The NoiseFiltersR package (and the rest of this work) focuses on label noise, which
is known to be the most disruptive one, since label quality is essential for the classi�er training [20].

In order to address the problem of label noise, there exist two main approaches in the literature,
and both are surveyed in the recent work [3]. On the one hand, algorithm level approaches [12]
attempt to create robust classi�cation algorithms that are little in�uenced by the presence of noise.
On the other hand, data level approaches [8] (also called �lters) try to develop strategies to cleanse the
dataset as a previous step to the �t of the classi�er. The NoiseFiltersR package follows the second
approach, since this allows to carry out the data preprocessing just once and apply any classi�er
thereafter, whereas the �rst option is speci�c for each classi�cation algorithm1.

Regarding data-level handling of label noise, we take the aforementioned survey by Frénay et al.
[3] as the basis for our NoiseFiltersR package. That work provides an overview and references for
the most popular classical and state-of-the-art �lters, which are organized and classi�ed taking into
account several aspects:

� Considering how to identify noisy instances, ensemble based, similarity based and data complex-
ity based algorithms are distinguished. The �rst type makes use of predictions from classi�ers
ensembles built over di�erent partitions or resamples of training data, the second is based on
label distribution in the nearest neighbors of each instance, and the third attempts to reduce
complexity metrics which are related to the presence of noise. As we will explain in Section
3 (see Figure 1), the NoiseFiltersR package contains implementations of all these types of
algorithms, and the explicit distinction is indicated in the documentation page of each function.

� Regarding how to deal with the identi�ed noise, noise removal and noise reparation strategies
are considered. The �rst option removes the noisy instances, whereas the second one relabels
them with the most likely label on the basis of the information available. There also exist
hybrid approaches, which only carry out relabelling when they have enough con�dence on the
new label, and otherwise remove. The discussion between noise removal, noise reparation and
their possible sinergies is an active and open �eld of research [3, Section VI.H]: most works
agree on the potential damages of incorrect relabelling [10], although other studies also point
out the dangers of removing too many instances and advocate hybrid approaches [14]. As we
will see in Section 3, the NoiseFiltersR package includes �lters which implement all these
possibilities, and the speci�c behaviour is explicitly indicated in the documentation page of the
corresponding function.

3 The NoiseFiltersR package

The released package implements, documents, explains and provides references for a broad collection
of label noise �lters surveyed in [3]. To the best of our knowledge, it is the �rst comprehensive review
and implementation of this topic for R, which has become an essential tool in Data Mining in the
last years.

1Of course, in R there exist implementations of very popular label noise robust classi�ers (the aforementioned algorithm-
level approach), such as C4.5 and RIPPER, which are called J48 and JRip respectively in RWeka package [7] (which is a
R interface to WEKA software [18]).

2

Namely, the NoiseFiltersR package includes a total of 30 �lters which were published along 24
research papers (each one of these papers is referenced in the corresponding �lter documentation
page, see Section 3.2). Regarding the noise detection strategy, 13 of them are ensemble based �lters,
14 can be cataloged as similarity based, and the other 3 are based on data complexity measures.
Taking into account the noise handling approach, 4 of them integrate the possibility of relabelling,
whereas the other 26 only allow for removing (which clearly evidences a general preference for data
removal in the literature). The full list of implemented �lters and its distribution according to the two
aforementioned criterions is displayed in Figure 1, which provides a general overview of the package.

�������� �	�	�
�	�

�
�

�������	�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

	

�

�

����������	�
���	���

�

�

�

�

�

�

�

�

	

�

�

	

�

��������	
��	
�

�����	���
��	
�

����	
��	
���	���
��	
�

���

��������

��
����	
��	
�

�

���

��

�

��

������	
��	
�

�

����

����

���

 ���!

 ���"

 ���#

��$

���

���%&

���

'��
()��(�

��	���	���
��	
�

����
����%

������*%

+������
,���
��	
�

�-

$�

&��

��	
�

Figure 1: Names and taxonomy of available �lters in the NoiseFiltersR package.

The rest of section is organized as follows. Section 3.1 is devoted to the installation process.
In Section 3.2 we present the documentation, where further details of each �lter can be looked up.
Section 3.3 focuses on the two implemented methods to call the �lters. Finally, Section 3.4 presents
the filter class, which uni�es the return value of the �lters in NoiseFiltersR package.

3.1 Installation

The NoiseFiltersR package is available at CRAN servers, so it can be downloaded and installed
directly from the R command line by typing:

install.packages("NoiseFiltersR")

This command will also install the eleven dependencies of the package, which mainly provide the
classi�cation algorithms needed for the implemented �lters, and which can be looked up in the �Im-
ports� section of the CRAN website for the package https://cran.r-project.org/web/packages/

NoiseFiltersR/index.html.
In order to easily access all the package's functions, it must be attached in the usual way:

library(NoiseFiltersR)

3.2 Documentation

Whereas this vignette provides the user with an overview of the NoiseFiltersR package, it is also
important to have access to speci�c information for each available �lter. This information can be
looked up in the corresponding documentation page, that in all cases includes the following essential
items (see Figure 2 for an example):

3

� A description section, which indicates the type of �lter according to the taxonomy explained at
the end of Section 2 and summarized in Figure 1.

� A details section, which provides the user with a general explanation of the �lter's behaviour
and any other usage particularity or warning.

� A references section that points to the original contribution where the �lter was proposed, where
further details, motivations or contextualization can be found.

Figure 2: Extract from GE �lter's documentation page, showing the highlighted above aspects.

As usually in R, the function documentation pages can be either checked in the CRAN website
for the package or loaded from the command line with the orders ? or help:

?GE

help(GE)

3.3 Calling the �lters

When it comes to apply a label-noise �lter in Data Mining applications, all we need to know is the
dataset to be �ltered and its class variable (i.e. the one that contains the label for each available
instance). The NoiseFiltersR package provides two standard ways for tagging the class variable
when calling the implemented �lters (see also Figure 3 and the example below):

� The default method receives the dataset to be �ltered in the x argument, and the number for
the class column through the classColumn argument. If the latter is not provided, the last
column of the dataset is assumed to contain the labels.

� The formula method is intended for regular R users, who are used to this approach when
�tting regression or classi�cation models. It allows for indicating the class variable (along with
the attributes to be used) by means of an expression like Class~Attr1+...+AttrN (recall that
Class~. makes use of all attributes).

Next, we provide an example on how to use these two methods for �ltering out the iris dataset with
edgeBoostFilter (we do not change the default parameters of the �lter):

data(iris)

str(iris)

'data.frame': 150 obs. of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

4

Using the default method:

out_Def <- edgeBoostFilter(iris, classColumn = 5)

Using the formula method:

out_For <- edgeBoostFilter(Species~., iris)

Checking that the filtered datasets are identical:

identical(out_Def$cleanData, out_For$cleanData)

[1] TRUE

Figure 3: Extract from edgeBoostFilter's documentation page, which shows the two methods for calling

�lters in NoiseFiltersR package. In both cases, tuning parameters of the �lter are provided through

additional arguments.

Notice that, in the last command of the example, we used the $ operator to access the objects
returned from the �lter. In next section we explore the structure and contents of these objects.

3.4 The filter class

The S3 class filter is designed to unify the return value of the �lters inside the NoiseFiltersR
package. It is a list that encapsulates seven elements with the most relevant information of the
process:

� cleanData is a data.frame containing the �ltered dataset.

� remIdx is a vector of integers indicating the indexes of removed instances (i.e. their row number
with respect to the original data.frame).

� repIdx is a vector of integers indicating the indexes of repaired/relabelled instances (i.e. their
row number with respect to the original data.frame).

� repLab is a factor containing the new labels for repaired instances.

� parameters is a list that includes the tuning parameters used for the �lter.

� call is an expression that contains the original call to the �lter.

� extraInf is a character vector including additional information not covered by previous items.

As an example, we can check the structure of the above out_For object, which was the return value
of egdeBoostFilter function:

5

str(out_For)

List of 7

$ cleanData :'data.frame': 142 obs. of 5 variables:

..$ Sepal.Length: num [1:142] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

..$ Sepal.Width : num [1:142] 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

..$ Petal.Length: num [1:142] 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

..$ Petal.Width : num [1:142] 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

..$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

$ remIdx : int [1:8] 58 78 84 107 120 130 134 139

$ repIdx : NULL

$ repLab : NULL

$ parameters:List of 3

..$ m : num 15

..$ percent : num 0.05

..$ threshold: num 0

$ call : language edgeBoostFilter(formula = Species ~ ., data = iris)

$ extraInf : chr "Highest edge value kept: 0.0669358381115568"

- attr(*, "class")= chr "filter"

In order to cleanly display this filter class in the R console, two speci�c print and summary

methods were implemented. The appearance of the �rst one is as follows

print(out_For)

Call:

edgeBoostFilter(formula = Species ~ ., data = iris)

##

Parameters:

m: 15

percent: 0.05

threshold: 0

##

Results:

Number of removed instances: 8 (5.333333 %)

Number of repaired instances: 0 (0 %)

and contains three main blocks:

� The original call to the �lter.

� The tuning parameters used for the �lter.

� An overview of the results, with the number (and percentage of the total) of removed and
repaired instances.

The summary method displays some extra blocks:

� It always adds a title that summarizes the �lter and dataset used.

� If there exists additional information in the extraInf component of the object, it is displayed
under a homonymous block.

� If the argument explicit is set to TRUE (it defaults to FALSE), the explicit results (i.e. the
indexes for removed and repaired instances and the new labels for the latters) are displayed.

In the case of the out_For object, the summary gets the following:

summary(out_For, explicit = TRUE)

Filter edgeBoostFilter applied to dataset iris

##

Call:

edgeBoostFilter(formula = Species ~ ., data = iris)

##

Parameters:

m: 15

percent: 0.05

threshold: 0

##

Results:

6

Number of removed instances: 8 (5.333333 %)

Number of repaired instances: 0 (0 %)

##

Additional information:

Highest edge value kept: 0.0669358381115568

##

Explicit indexes for removed instances:

58 78 84 107 120 130 134 139

4 Summary

In this vignette we introduced the NoiseFiltersR package, which is the �rst R extensive imple-
mentation of classi�cation-oriented label-noise �lters. To set a context and motivation for this work,
we presented the problem of label noise inside data preprocessing and the related software. As we
explained, the released package uni�es the return value of the �lters by means of a S3 class, which
bene�ts from speci�c print and summary methods. Moreover, it provides a R-user-friendly way to call
the implemented �lters, whose documentation is worth reading and points to the original reference
where they were �rst published.

Regarding the potential extensions of this package, there exist several aspects which can be
adressed in future releases. For instance, there exist some other label-noise �lters reviewed in the main
reference [3] whose noise identi�cation strategy does not belong to the ones covered here: ensemble
based, similarity based and data complexity based (as shown in Figure 1). A relevant extension would
be the inclusion of some datasets with di�erent levels of arti�cially introduced label noise, in order
to ease the experimentation work�ow2.

References

[1] J Alcalá, A Fernández, J Luengo, J Derrac, S García, L Sánchez, and F Herrera. Keel data-
mining software tool: Data set repository, integration of algorithms and experimental analysis
framework. Journal of Multiple-Valued Logic and Soft Computing, 17(2-3):255�287, 2010.

[2] Peter Filzmoser and Moritz Gschwandtner. mvoutlier: Multivariate outlier detection based on
robust methods, 2015. R package version 2.0.6.

[3] Benoît Frénay and Michel Verleysen. Classi�cation in the presence of label noise: a survey. IEEE
transactions on neural networks and learning systems, 25(5):845�869, 2014.

[4] Salvador García, Julián Luengo, and Francisco Herrera. Data preprocessing in data mining.
Springer, 2015.

[5] Salvador García, Julián Luengo, and Francisco Herrera. Tutorial on practical tips of the most
in�uential data preprocessing algorithms in data mining. Knowledge-Based Systems, 98:1�29,
2016.

[6] James Honaker, Gary King, and Matthew Blackwell. Amelia II: A program for missing data.
Journal of Statistical Software, 45(7):1�47, 2011.

[7] Kurt Hornik, Christian Buchta, and Achim Zeileis. Open-source machine learning: R meets
weka. Computational Statistics, 24(2):225�232, 2009.

[8] Taghi M Khoshgoftaar and Pierre Rebours. Improving software quality prediction by noise
�ltering techniques. Journal of Computer Science and Technology, 22(3):387�396, 2007.

[9] Max Kuhn. Caret package. Journal of Statistical Software, 28(5), 2008.

[10] André LB Miranda, Luís Paulo F Garcia, André CPLF Carvalho, and Ana C Lorena. Use
of classi�cation algorithms in noise detection and elimination. In International Conference on
Hybrid Arti�cial Intelligence Systems, pages 417�424. Springer, 2009.

[11] Andrea Dal Pozzolo, Olivier Caelen, and Gianluca Bontempi. unbalanced: Racing for Unbalanced
Methods Selection, 2015. R package version 2.0.

2A wide variety of such datasets can be downloaded from the KEEL dataset repository in the website http://www.keel.
es/, and then loaded from R.

7

[12] J Ross Quinlan. C4.5: programs for machine learning. Elsevier, 2014.

[13] Piotr Romanski and Lars Kottho�. FSelector: Selecting attributes, 2014. R package version 0.20.

[14] Choh Man Teng. Dealing with data corruption in remote sensing. In International Symposium
on Intelligent Data Analysis, pages 452�463. Springer, 2005.

[15] Ivan Tomek. Two modi�cations of cnn. IEEE Trans. Systems, Man and Cybernetics, 6:769�772,
1976.

[16] Stef van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate imputation by chained
equations in r. Journal of Statistical Software, 45(3):1�67, 2011.

[17] Dennis L Wilson. Asymptotic properties of nearest neighbor rules using edited data. IEEE
Transactions on Systems, Man, and Cybernetics, (3):408�421, 1972.

[18] Ian H Witten and Eibe Frank. Data Mining: Practical machine learning tools and techniques.
Morgan Kaufmann, 2005.

[19] Xindong Wu and Xingquan Zhu. Mining with noise knowledge: error-aware data mining. IEEE
Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 38(4):917�932,
2008.

[20] Xingquan Zhu and Xindong Wu. Class noise vs. attribute noise: A quantitative study. Arti�cial
Intelligence Review, 22(3):177�210, 2004.

8

