#' @title Density Locfit Learner
#'
#' @name mlr_learners_dens.locfit
#'
#' @description
#' A [mlr3proba::LearnerDens] implementing locfit from package
#' \CRANpkg{locfit}.
#' Calls [locfit::density.lf()].
#'
#' @templateVar id dens.locfit
#' @template section_dictionary_learner
#'
#' @template seealso_learner
#' @template example
#' @export
LearnerDensLocfit = R6Class("LearnerDensLocfit",
inherit = LearnerDens,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
ps = ParamSet$new(
params = list(
ParamFct$new(id = "window", levels = c(
"tcub", "rect", "trwt",
"tria", "epan", "bisq",
"gaus"), default = "gaus", tags = "train"),
ParamDbl$new(id = "width", tags = "train"),
ParamDbl$new(id = "from", tags = "train"),
ParamDbl$new(id = "to", tags = "train"),
ParamDbl$new(id = "cut", tags = "train"),
ParamDbl$new(id = "deg", default = 0, tags = "train"),
ParamFct$new(
id = "link", default = "ident", tags = "train",
levels = c("ident", "log", "logit", "inverse", "sqrt", "arcsin")),
ParamFct$new(
id = "kern", default = "tcub", tags = "train",
levels = c("rect", "trwt", "tria", "epan", "bisq", "gauss", "tcub")),
ParamFct$new(
id = "kt", default = "sph", tags = "train",
levels = c("sph", "prod")),
ParamLgl$new(id = "renorm", default = FALSE, tags = "train"),
ParamInt$new(id = "maxk", default = 100, lower = 0, tags = "train"),
ParamFct$new(id = "itype", levels = c("prod", "mult", "mlin", "haz"), tags = "train"),
ParamInt$new(id = "mint", default = 20, lower = 1, tags = "train"),
ParamInt$new(id = "maxit", default = 20, lower = 1, tags = "train")
)
)
super$initialize(
id = "dens.locfit",
packages = "locfit",
feature_types = c("logical", "integer", "numeric", "character", "factor", "ordered"),
predict_types = "pdf",
param_set = ps,
man = "mlr3learners.locfit::mlr_learners_dens.locfit"
)
}
),
private = list(
.train = function(task) {
pars = self$param_set$get_values(tag = "train")
data = task$truth()
pdf <- function(x) {
}
body(pdf) <- substitute({
mlr3misc::invoke(locfit::density.lf, x = data, ev = x, .args = pars)$y
})
distr6::Distribution$new(
name = paste("LocFit Density", self$param_set$values$window),
short_name = paste0("LocFitDens", self$param_set$values$window),
pdf = pdf,
type = set6::Reals$new())
},
.predict = function(task) {
mlr3proba::PredictionDens$new(task = task, pdf = self$model$pdf(task$truth()))
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.