R/LearnerDensLocfit.R

#' @title Density Locfit Learner
#'
#' @name mlr_learners_dens.locfit
#'
#' @description
#' A [mlr3proba::LearnerDens] implementing locfit from package
#'   \CRANpkg{locfit}.
#' Calls [locfit::density.lf()].
#'
#' @templateVar id dens.locfit
#' @template section_dictionary_learner
#'
#' @template seealso_learner
#' @template example
#' @export
LearnerDensLocfit = R6Class("LearnerDensLocfit",
  inherit = LearnerDens,

  public = list(
    #' @description
    #' Creates a new instance of this [R6][R6::R6Class] class.
    initialize = function() {
      ps = ParamSet$new(
        params = list(
          ParamFct$new(id = "window", levels = c(
            "tcub", "rect", "trwt",
            "tria", "epan", "bisq",
            "gaus"), default = "gaus", tags = "train"),
          ParamDbl$new(id = "width", tags = "train"),
          ParamDbl$new(id = "from", tags = "train"),
          ParamDbl$new(id = "to", tags = "train"),
          ParamDbl$new(id = "cut", tags = "train"),
          ParamDbl$new(id = "deg", default = 0, tags = "train"),
          ParamFct$new(
            id = "link", default = "ident", tags = "train",
            levels = c("ident", "log", "logit", "inverse", "sqrt", "arcsin")),
          ParamFct$new(
            id = "kern", default = "tcub", tags = "train",
            levels = c("rect", "trwt", "tria", "epan", "bisq", "gauss", "tcub")),
          ParamFct$new(
            id = "kt", default = "sph", tags = "train",
            levels = c("sph", "prod")),
          ParamLgl$new(id = "renorm", default = FALSE, tags = "train"),
          ParamInt$new(id = "maxk", default = 100, lower = 0, tags = "train"),
          ParamFct$new(id = "itype", levels = c("prod", "mult", "mlin", "haz"), tags = "train"),
          ParamInt$new(id = "mint", default = 20, lower = 1, tags = "train"),
          ParamInt$new(id = "maxit", default = 20, lower = 1, tags = "train")
        )
      )

      super$initialize(
        id = "dens.locfit",
        packages = "locfit",
        feature_types = c("logical", "integer", "numeric", "character", "factor", "ordered"),
        predict_types = "pdf",
        param_set = ps,
        man = "mlr3learners.locfit::mlr_learners_dens.locfit"
      )
    }
  ),

  private = list(
    .train = function(task) {
      pars = self$param_set$get_values(tag = "train")

      data = task$truth()

      pdf <- function(x) {
      }
      body(pdf) <- substitute({
        mlr3misc::invoke(locfit::density.lf, x = data, ev = x, .args = pars)$y
      })

      distr6::Distribution$new(
        name = paste("LocFit Density", self$param_set$values$window),
        short_name = paste0("LocFitDens", self$param_set$values$window),
        pdf = pdf,
        type = set6::Reals$new())
    },

    .predict = function(task) {
      mlr3proba::PredictionDens$new(task = task, pdf = self$model$pdf(task$truth()))
    }
  )
)
mlr3learners/mlr3learners.locfit documentation built on July 28, 2020, 5:39 p.m.