
logitModel
Marcelo Rainho Avila

24.04.2018

Abstract

As part of the Statistical Programming with R course ministered in the Winter Term of 2017 / 2018,
this vignette aims to explore the implementation of an alternative package that conducts a logistic
regression estimation. The created package includes a Maximum Likelihood Estimator based on the
Newton-Rahpson algorithm, a formula interface for easier user interaction, a print, summary, plot and
S3-Methods that mimics the glm(..., family = binomial) implementation of the stats package as well
as a pairs method for an overview of the interaction between the explanatory and explained variables.

Contents

1 Introduction 2

2 Theoretical Background 3

2.1 Interpretation of the results . 3

2.2 Maximum Likelihood Estimation Method . 5

2.3 The Newton-Raphson Method . 6

3 R Implementation 8

The logitModel function formula interface . 8

The S3 print() Method . 9

The S3 summary() Method . 9

The S3 plot() Method . 10

The S3 pairs() Method . 12

Implementing the Newton-Rahpson Algorithm . 12

4 Discussion and Acknowledgements 14

Appendix 15

References 15

1

1 Introduction

Differently to the linear regression estimation methods, the logistic regression, being one member of the
generalized linear models, is used when conducting estimations for a categorical response data. A categorical
variable has a measurement scale of a set of countable categories. A student might be trying to decide between
studying Economics, Administration or Psychology. A political scientist, for example, might be interested
in the political view of the participants in a interview, such as “left-leaning”, “moderate” or “right-leaning”.
A physician could be classifying the stage of a patients disease as in “initial”, “middle” or “advanced” stage.
A computer scientist might be interested in classifying whether an image contains a hot-dog or it does not.
These type of data is of importance in several applications and research areas.

From the above examples, one is able to verify certain distinctions between the types of information. The
choices faced by the student are called to have a nominal scale, since there is not a natural way of ordering
those subjects. On the other hand, the disease stage of interest to the physician has a natural ordering and,
thus, can be said to have a ordinal scale. The most simple of these type of data are binary, that is, it can
only take two possible values, such as “success / failure”, “won / lost”, “hot-dog / not hot-dog” and, more
generally, “1 / 0”. For this type of data, a logistic regression can be conducted for estimating the probability
of an event occurring give the set of explanatory variables that the model is built upon and will be more
deeply explored in the next sections.

2

2 Theoretical Background

In this section, I will explore the theoretical underpinning of the logistic regression model.
Assume there are p explanatory variables and one wants to model their influence over the probability π, such
that

πi = P (Yi = 1) = E(Yi) .

Assuming a linear regression model holds, it would follow that

πi = P (Yi = 1) = E(Yi) = x′
iβ ,

where the probability of success changes linearly with changes of x, with β being the change in expected
probability in π respective to a unit change in x. This simple model can be a very good approximation and
very useful for a range of data values of x. Nevertheless, due to the linearity of x′

iβ, this model could take
values that exceed the range [0, 1], which is nonsensical when dealing with probability values.
To solve this problem, the probability P (Y1 = 1) is transformed via a Distribution function F (η), where η
is a linear predictor ηi = x′

iβ. There are a few commonly used reponse functions with the only restriction
that F () is strictly monotonically increasing over the whole Real Numbers with F (ηi) ∈ [0, 1]. The exact
choice of the response function F (), and the corresponding link function (that is, the inverse of the response
function) will define the kind of binary response variable modeling to be conducted. For the standard normal
distribution, one obtains a probit model.
For the binary logit model, the Logist function is employed. The model can be, thus, modeled as a logistic
regression such that

πi = F (ηi) = exp(ηi)
1 + exp(ηi)

(1)

or with the logit link function

g(πi) = log
(

πi
1− πi

)
= logit(πi) = ηi = x′

iβ . (2)

In order to better visualize the relationship between the explanatory and the response variable (in a partial
scenario), refer to Figure 1. Here it is easy to observe the non-linearity between the explanatory and the
response variable. For different values of x, the increased probability of sucess behave very differently if the
starting values of x are relatively low compared to the same variation in x when starting from a higher value.

2.1 Interpretation of the results

Due to the non-linearity of the model, one cannot directly interpret the variable coefficients as changes in
the probability of an event occurring. To understand the model, we can refer to the Odds of the occurrence
of an event. This is defined as the probability of the event occurring against the probability that it does not.
Formally,

Odds(π) ≡ P (Y = 1)
P (Y = 0) = P (Y = 1)

1− P (Y = 1) = π

1− π .

This terminology is often used in gambling scenarios. That is, if the odds of winning in a hand of poker is
3 to 1 (i.e. 3/1 or 3:1), it is expected that the player wins 3 times out of every 4 games, which equals to 75
percent. And, as expected 3

1 = 0.75
1−0.75 .

3

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

P
(Y

 =
 1

)

βi > 0

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

P
(Y

 =
 1

)

βi < 0

Figure 1: Shape of logistic function for positive and negative values of β and α = 0.

From Equations 1 and 2 one can show that

Odds(πi) = πi
1− πi

=
exp(ηi)

1+exp(ηi)
1

1+exp(ηi)
= exp(ηi) . (3)

Moreover, taking the log on both sides of equation (3), one gets

log
(

πi
1− πi

)
= ηi = x′

iβ = β0 + β1xi1 + β2xi2 + ...+ βkxik .

Furthermore, due to the product rule of exponentials, one can show that

Odds1(π | xi1) = P (Y = 1 | xi1)
P (Y = 0 | xi1) = exp(β0) · exp(β1xi1) · ... · exp(βkxik). (4)

And, if one increases xi1 by one unit, while keeping other variables constant, one gets

Odds2(π | xi1 + 1) = P (Y = 1 | xi1 + 1)
P (Y = 0 | xi1 + 1) = exp(β0) · exp(β1(xi1 + 1)) · ... · exp(βkxik). (5)

Finally, if we divide Odds2 by Odds1, what is defined as the Odds Ratio between the two scenarios, we see
that all terms cancel themselves out, leaving only the term with the added unit, as in

Odds Ratio(2,1) = Odds2(π, xi1 + 1)
Odds1(π, xi1) = exp(β1). (6)

For instance, if β1 = 0.3 and x1, exp(β1) ≈ 1.35, which means that - for a continuous x - the odds (not the
probability) of the event occurring increases by about 35 percent, that means, it gets multiplied by 1.35, as x
increases by one unit. One can observe that while the Odds Ratio remains constant for any x, the probability
itself depends on the base value one starts with. In case x1 was a dummy variable (such as x1 = 0, for male
and x1 = 1 for female) and keeping the same coefficient as illustrated above, than the odds of the event
occurring is 35 percent higher for a female, when comparing to a male with, otherwise, same characteristics.
In general, if:

4

• βi > 0⇒ exp(βi) > 1⇒ Odds increases
• βi < 0⇒ 0 < exp(βi) < 1⇒ Odds decreases
• βi = 0⇒ exp(βi) = 1⇒ Odds remains constant

2.2 Maximum Likelihood Estimation Method

The Maximum Likelihood Estimation (MLE) is an method that estimates the parameters of a model by
maximizing the Likelihood of obtaining the observed data. For a binary response variable stands that
each Yi ∼ B(1, πi), where πi = E(Yi), that is, each observation is follows Binomial Distribution with one
observation, which follows, per definition, a Bernoulli Distribution

f(x | πi) = πi
yi(1− πi)1−yi .

Assuming independent and identically distributed (iid) observed variables, the Likelihood function is defined
as

L (β) =
n∏
i=1

f(yi | πi) =
n∏
i=1

πi
yi(1− πi)1−yi ,

and for easier handling of the product over multiple terms, one can take the logarithm and arrive at the
log-likelihood,

`(β) ≡ log(L (β)) =
n∑
i=n

(
yi log(πi)− yi log(1− πi) + log(1− πi)

)
=

n∑
i=n

(
yi log(πi

1− πi
) + log(1− πi)

)
In the case of the logit models, from the above equation, it follows that

`(β) =
n∑
i=n

(
yi(x′

iβ)− log(1 + exp(x′
iβ)
)
.

2.2.1 Score Vector

For the calculation of the parameters that maximizes the Likelihood-function one can take the first derivative
of the log-likelihood function over the parameters β, which is defined as the score vector

s(β) = ∂`(β)
∂β

= ∂

∂β

n∑
i=1

(
yiηi − log(1 + exp(ηi))

)
=

n∑
i=1

(
yi −

1
1 + exp(ηi)

exp(ηi)
)
x′

i

=
n∑
i=1

(yi − πi)x′
i

(7)

Extreme values for the estimates of β can be found by setting Eq. 7 equal to zero and solving for each β
coefficient. Due to the monotonic transformation property of the logarithmic function, it can be shown that

5

the vector of parameters that maximizes the log-likelihood is the same as maximizing the actual likelihood
function (A Czepiel 2002, 5).

The solutions, if existing, define the maximum point if the matrix of the second partial derivatives, denom-
inated as Hessian Matrix, is negative definite, that is, if every diagonal element is less than zero (see A
Czepiel 2002, 6). Since the Hessian Matrix computes the second derivative, that is, the curvature of the
log-likelihood function, one can better grasp that the Hessian Matrix forms the variance-covariance matrix
of the parameters estimates. That is, a matrix with a strong curvature contains abundant information
over the observed data and, therefore, less variation on the parameters is expected. On the other hand, a
weakly curved matrix contains little information on the observed data and the estimated parameters can
vary greatly.

2.2.2 Fisher Information Matrix

The Fisher Information Matrix is a measure of the information that a random variable X carries about a
unknown parameter upon which the probability of X depends. It is derived from the Hessian Matrix and
computed as

I(β) = −E
(
H(β)

)
= −E

(
∂s(β)
∂β

)
It can also be shown that the asymptotic variance of the ML Estimator reaches the Cramer-Rao bound,
which fixes the lower bound of the variance of a unbiased estimator

Var(β̂ML) = 1
I(β) ≤ Var(θ) .

2.3 The Newton-Raphson Method

Solving a system of non-linear equations cannot be done algebraically, as it is the case with the ordinary
least squares estimator. One popular algorithm for solving such problems is the Newton-Raphson method,
which estimates the unknown parameters via a iterative process, that is explored in this section, which is
based on the explanation from Czepiel (2002, pp. 7-8).

Beginning with an initial guess for the solution, the Newton-Raphson method guess the first two terms of
a Taylor polynomial approximation evaluated at the initial guess to obtain a better estimate, that is, one
closer to the solution. The iterative algorithm can be basically described by

xi+1 = xi −
f(xi)
f ′(xi)

in order to solve a non-linear equation f(x) = 0 (see Ypma 1995, 531). For a illustration of the method,
refer to Fig. 2, based on (Polyak 2007, 1087).

In the logistic regression, the (system of) equations to be solved are as defined in Eq. (7) for each β, where

βi+1 = βi − s(β)
H(β) .

In matrix notation, one can show that

s(β) = XT (y − π)

and

6

θreal

f'i

f(x)

θ̂i

f'1+i

θ̂i+1

Figure 2: Illustration of the Newton-Rahpson Method.

H(β) = −XTWX ,

where s() and H() are the score and hessian matrix, respectively, and W is a square matrix with πi(1− πi)
on its diagonal.

Thus, in matrix notation, we have

βi+1 = βi + (XTWX)−1XT (y − π) (8)

The algorithm essentially apply the above formulation until a certain tolerance criterion is reached, such that
the difference βi+1 − βi is smaller than a chosen tolerance level. The details about the necessary regularity
conditions for convergence is out of the scope of this paper, nonetheless, one should always be aware that
the algorithm might never converge or get stuck in a local maximum among other problematic scenarios.

7

3 R Implementation

In this section I will elaborate on the R implementation of the logist regression method as detailed on the
previous section.

For this example, I will use the Donner–Reed Party1 data set that is included in package:logitModel. The
data is about the tragic event that occurred during the winter of 1846–47 when a group of American pioneers
set out to California in a wagon train and got stuck midway in Sierra Nevada. Only about half of the party
survived to reach California.

The logitModel function formula interface

Via the formula interface, the user can easily pass the arguments whether continuous or categorical to the
function as it is implemented in other common R functions.

library(logitModel)
fit <- logitModel(survived ~ age + sex, data = DonnerData)

While the logtiModel function is rather long, the process is rather straightforward and can be divided into
three sections. Initialization, estimation computation and return of results.

The initialization part first checks if the user passed a data.frame as an argument and uses the variables
passed in the formula from that data.frame. In case the user desires not to use a data frame, as, for example,
it might be desired to use variables defined in the global environment, then the function will search for the
variable the parent environment.

logitModel <- function(formula, data, precision = 1e-10, iterMax = 25) {

generate model.frame. If "data" missing, search variables in Parent Env
if(missing(data)) {

modelFrame <- model.frame(formula, data = parent.frame())
} else {

modelFrame <- model.frame(formula, as.data.frame(data))
}
...

Over the next few steps, the design matrix and response variable are retrieved via the model.matrix() and
model.frame() functions, respectively, and a few checks are conducted in order to make sure the variables
are binary and coded as zeros and ones for the following computations.

...
Extract design matrix (X) and response var (y)
X <- model.matrix(formula, modelFrame)
y <- model.response(modelFrame)

make sure response variable is coded with 0s and 1s
if (!(0 %in% y && 1 %in% y)) {

y <- factor(y, labels = c(0, 1))
}
y <- as.numeric(as.character(y))

sanity check

1A detailed account of the tragic event can be found on https://en.wikipedia.org/wiki/Donner_Party

8

https://en.wikipedia.org/wiki/Donner_Party

if (length(unique(y)) != 2) {
stop("Response variable is expected to be binary")

}
...

In the computation part, first a Null model estimation is conducted, where only the intercept is passed to
the newtonRaphson() function and a few statistics are computed for this model. Then, the estimation for
the full model is conducted and some more statistics are computed.

...
Restricted Model
XNull <- as.matrix(rep(1, length(y)))
restricModel <- newtonRaphson(y = y,

X = XNull,
precision = precision,
iterMax = iterMax)

bNull <- restricModel$beta
logLikelihoodNull <- (sum((y * XNull %*% bNull) -

(log(1 + exp(XNull %*% bNull)))))

devianceNull <- -2 * logLikelihoodNull
dfNull <- nrow(X) - 1 # DF Null Model

Estimation Model
MLEstimation <- newtonRaphson(y, X, precision = precision, iterMax = iterMax)
...

The S3 print() Method

The S3 print() method mimics the stats:::print.glm() output, albeit with changes for a more compact
view of the basic results.

fit
Call: logitModel(formula = survived ~ age + sex, data = DonnerData)
#
Coefficients:
(Intercept) age sexMale
1.36141 -0.02937 -1.05989
#
Obs. : 90.00 DF : 87.00
Deviance : 114.02 AIC : 120.02

The S3 summary() Method

Also mimicking the summary() output of an glm object, the summary method includes a few other statistics
and information on the model results. The choice was again to portray the results in a bit more compact
form, which also makes it possible to include a few other important statistics on the model, such as Bayesian
Information Criterion (BIC) and the Log-Likelihood value of the full model.

9

summary(fit)
Call: logitModel(formula = survived ~ age + sex, data = DonnerData)
#
Deviance Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.769900 -1.020384 0.697998 0.011996 1.096457 1.708992
#
Coefficients:
Estimate Std. error z value Pr(>|z|)
(Intercept) 1.361407 0.481375 2.8282 0.004682 **
age -0.029366 0.014686 -1.9995 0.045550 *
sexMale -1.059886 0.466965 -2.2697 0.023224 *
#
Obs. : 90.00 DF : 87.00
Resid. Deviance : 114.02 AIC : 120.02
Null Devinance : 124.59 BIC : 127.52
Log-Likelihood : -57.01 NR Iterat. : 5.00

The S3 plot() Method

The plot method, as shown below, tries to mimic the behavior of the plot.lm method of the stats package.
Apart from the addition of colors to help identify the response variables.

op <- par(mfrow = c(2,2))
plot(fit)

10

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

5
0.

0
1.

0
Residuals vs Fitted

Predicted Values
 survived ~ age + sex

330626954

−2 −1 0 1 2

−
1.

5
0.

0
1.

0

Normal Q−Q

Theoretical Quantiles
 survived ~ age + sex

S
td

. d
ev

ia
nc

e
re

si
d.

3 30626954

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.
8

1.
0

1.
2

Scale Location

Predicted Values
 survived ~ age + sex

330626954

0.02 0.06 0.10 0.14

−
2

0
1

2

Residual vs Leverage

Leverage
 survived ~ age + sex

S
td

. P
ea

rs
on

 r
es

id
.

Cook's Distance [0.5, 1]330626954

This implementation includes a helper function that is called when plotting interactively. From the second
plot onward, if the user intends to view more than one plot, the user is given the option to quit the plotting
procedure before cycling through all plots. As shown in the next chunk, this is done with help from the
readline() function, that waits for an input from the user. If the use inputs the letter q, the helper function
returns "no" to the parent environment (that is, the plot.logitModel function), which in turns breaks the
function.

plot.logitModel <- function(model, which = 1:4, col, ask,
cookLevels = c(.5, 1), ...) {

...
Plot 02
if (2 %in% which) {

if (length(which) > 1 && ask && nextPlot() == "no") {
return(invisible())

}
...

}

nextPlot <- function() {
prompt <- "Enter anything to continue or [q] to quit: "
UInput <- readline(prompt=prompt)
if (UInput %in% c("q", "Q")) return(invisible("no"))
return("yes")

}

11

The S3 pairs() Method

The functionality of the S3 pairs() method for the logitModel class object can be better demonstrated when
modeling a bigger model, that is, with more covariates. In this case, consider adding the dummy variable
family into the current model.

fit2 <- logitModel(survived ~ age + sex + family, data = DonnerData)
pairs(fit2)

0 10 20 30 40 50 60 70

0.
0

0.
6

survived ~ age

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
6

survived ~ sexMale

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
6

survived ~ familyDonner

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
6

survived ~ familyEddy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
6

survived ~ familyFosdWolf

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
6

survived ~ familyGraves

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
6

survived ~ familyKeseberg

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
6

survived ~ familyMcCutchen

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
6

survived ~ familyMurFosPik

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
6

survived ~ familyOther

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
6

survived ~ familyReed

Similar to the default pairs() method from the graphics package that plots all against all variables in
order to give the user a quick overview of the data and how each variable interacts with one another. In this
implementation, however, all explanatory variables are plotted against the response variable so that one can
visually check the resulting coefficients of the model. This function could be greatly improved, however, by
adding a confidence interval to indicate the degree of uncertainty of each estimated coefficient.

For more information on the dummy variable family, please refer to the help file via ?DonnerData.

Implementing the Newton-Rahpson Algorithm

The implemented algorithm can be divided into three sections. First the variables are initiated, then the
actual computation is done until convergence or until maximum iteration is reached and then a list of the
results is returned.

newtonRaphson <- function(y, X, precision = 1e-7, iterMax = 25) {
#01 initiate variables

12

beta <- rep(0, times = ncol(X))
i <- 0
convergence <- FALSE
...

In the initiation part, the beta vector as well as a iteration counter and a convergence flag is initiated. A
better implementation could optimize the algorithm by choosing are better initiating values for beta based
on the data at hand.

...
#02 compute coefficients until convergence or maximum iteration reached
while (i <= iterMax & convergence == FALSE) {

update i
i <- i + 1

calculate probabilities (pi)
eta <- X %*% beta
pi <- as.numeric(logist(X %*% beta))

init / update Matrix W
W <- diag(pi * (1 - pi))

calculate and update beta (eq. 23 from Czepiel, 2002)
deltaBeta <- solve(t(X) %*% W %*% X) %*% t(X) %*% (y - pi)
beta <- beta + deltaBeta

check convergence condition
if (sum(abs(deltaBeta)) < precision) {

convergence <- TRUE
break

}
}

if (convergence == FALSE) {
stop(paste(i, "iterations reached without convergence. Increase iterMax?"))

}

In the above excerpt follows very closely the previously elaborated explanation over the Newton-Raphson
method in Section 2, with special attention to Eq. 8, that defines each step of the procedure. Otherwise, the
iteration counter i counts how many steps is taken, while at each step the absolute change in deltaBeta is
checked against a precision (or tolerance) level. When the algorithm reaches the tolerance level, the loop is
broken and the function carries on to the next section.

In case there is no convergence, the loop runs until the maximum iteration is reached (iterMax) and then
the function stops throwing an error, that states that the algorithm did not converge (given the desired level
of precision). The user could then run the function again with a higher maximum number of iteration, but it
is also likely that there is some other problem with the data, because it is very rare that the method would
not converge before the 25 (default) number of iterations.

...
#03 return list of results
return(list(beta = beta,

pi = pi,
W = W,

13

eta = eta,
iterCount = i))

}

Finally, when convergence is achieved, a list of results is returned for further computation.

4 Discussion and Acknowledgements

This package implementation had the intention not only implementing a procedure using the statistical
programming language R, but also help to familiarize with the language itself. Package creation is at the
heart of the language and it is great part of the explanation why R is such a popular and rapidly developing
language. With the intent of delving a little deeper in all areas of a package creation, I also implemented a
automated test suite, which is found under the folder /tests/testthat/ that just checks if a few results of
the alternative implementation matches the glm() function from the stats package. Also in this regard the
“DonnerData” data set is exported with the package as well.

I would also like to thank those responsible for this course. It was a difficult task, but very rewarding and
surely great appreciated.

14

Appendix

Due to naive solution of the Newton-Raphson method, the algorithm doesn’t converge when including
family in the model, because all members of the Breen family survived. This seems to be the case of perfect
discrimination, when there is no overlap in the explanatory variables relative to response variables being
either 0 or 1 (see Agresti 1990, 195). That is, for all yi = 0 and yi = 1 observations, there is a x̄ value that
divides both set of observations.

To quickly circumvent this issue, I simply changed the survival outcome of one member of the Breen family,
so that my implementation could achieve convergence. This is definitely not a very sophisticated solution,
but the only intent was to show the functionality of the pairs() method.

Apart from, more information on the package is provided in the help file of each function.

References

A Czepiel, Scott. 2002. “Maximum Likelihood Estimation of Logistic Regression Models: Theory and
Implementation.”

Agresti, Alan. 1990. Categorical Data Analysis. A Wiley-Interscience Publication. New York [u.a.]: Wiley.

Polyak, Boris. 2007. “Newton’s Method and Its Use in Optimization” 181 (September): 1086–96.

Ypma, Tjalling J. 1995. “Historical Development of the Newton-Raphson Method.” SIAM Rev. 37 (4).
Philadelphia, PA, USA: Society for Industrial; Applied Mathematics: 531–51. doi:10.1137/1037125.

15

https://doi.org/10.1137/1037125

	Introduction
	Theoretical Background
	Interpretation of the results
	Maximum Likelihood Estimation Method
	The Newton-Raphson Method

	R Implementation
	The logitModel function formula interface
	The S3 print() Method
	The S3 summary() Method
	The S3 plot() Method
	The S3 pairs() Method
	Implementing the Newton-Rahpson Algorithm

	Discussion and Acknowledgements
	Appendix
	References

