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The Ising-Lenz Model 1 appear as one of the land mark systems in statistical
physics, as well as in many other fields including computational neuroscience.
Because of its simplicity and success in explaining critical phenomenon, Ising
Model is routinely used in research and as a teaching concept in statistical me-
chanics and in standard Monte Carlo methods. There exist analytical solutions
for 1D and 2D Ising Model. Still, numerical solutions with MC could provide
insights.

isingLenzMC package provides utilities to simulate one dimensional Ising
Model with Metropolis and Glauber Monte Carlo with single flip dynamics in
periodic boundary conditions 2. Computationally intensive parts are written in
low-level language (C) for efficiency reasons.

1 Ising Model

Consider one dimensional lattice that contains N sites. Each site values can be
labelled as {si}Ni=1. In two state version of a lattice, which is an Ising Model,
sites can take two values, such as {1,−1}, corresponding to spin up and spin
down states, for example as a model of magnetic material or the state of a
neuron.

The total energy, so called Hamiltonian, of the system can be expressed as
follows, for short-range parts with interaction strength J :

H({si}Ni=1, J,H) = J
(
(

N−1∑
i=1

sisi+1) + (s1sN )
)

+H

N∑
1

si

This expression contains two interactions, due to nearest-neighbors (NN) and
due to an external field. Coefficients J and H corresponds to these interactions
respectively. Note that, additional term in NN interactions s1sN appears due
to periodic (cyclic) boundary conditions.

∗This package supports following work, Effective ergodicity in single-spin-flip dynamics,
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1E. Ising 1924
2Higher dimensional models may be introduced in future releases.
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2 Simulation of the Ising Model

2.1 Single-flip dynamics

One of the common ways to generate dynamics for a lattice system explained
in the previous section is changing the value of a randomly choosen site to its
opposite value as a dynamical step. This procedure is called single-flip dynamics.
An example dynamics for 5 site lattice can be as follows:

{1,−1, 1, 1,−1}
{1,−1, 1,−1,−1}
{1, 1, 1,−1,−1}
{−1, 1, 1,−1,−1}

Note that, the quality of this kind of dynamics depends on the quality of
the random number generator (RNG) we use in selecting flipped site. However,
we assume that RNG in use is sufficiently good for this purpose. This matter
is beyond the scope of this document, however default RNG in R, Marsenne-
Twister is an appropriate choice.

2.2 Transition Probability

The transition probability associated to single spin flip, for Glauber and Metropo-
lis dynamics, can be computed as follows

pGlauber({si}Ni=1) = exp(−k∆H)/
(
1 + exp(k −∆H)

)
= 1/

(
1 + exp(k∆H)

)
pMetropolis({si}Ni=1) = min

(
1, exp(−k∆H)

)
where k = 1

kBT is the Boltzmann factor and ∆H is the total energy difference.

2.3 Metropolis Monte Carlo

In metropolis Monte Carlo, the above transition probability is compared with
a uniform number between [0, 1] to check the new lattice configuration induced
by the spin flip is an acceptable move. Note that the above formulation of
the transition probability numerically ensures that transition probability lies in
between [0, 1]. This procedure mimics importance sampling. This is a special
case of Metropolis-Hastings Markov Chain Monte Carlo (MCMC).

3 Utilities

Package provides utilities to perform Metropolis MC for two state 1D N -site
lattice, i.e., Ising Model. Functions with suffices with R are pure R imple-
mentations. In this section we document only C based implementations, while
functionality is the same.

One can generate a random configuration, perform single flip on the given
configuration, compute nearest-neighbour energy and total energy. In the fol-
lowing example we generate 7 sites randomly and perform a single spin flip. We
compute energies

2



> require(isingLenzMC)

> set.seed(123456)

> N <- 7

> myInitialConfig <- genConfig1D(N)

> myInitialConfig

[1] 1 1 -1 -1 -1 -1 1

> myNextConfig <- flipConfig1D(myInitialConfig)

> myNextConfig

[1] -1 1 -1 -1 -1 -1 1

> # nearest neighbour energy for initial config

> lattice1DenergyNN(myInitialConfig)

[1] 3

> # transition probability at J=H=1/kBT=1.0

> transitionProbability1D(1.0, myInitialConfig, myNextConfig, 1.0, 1.0, 1) # Metropolis

[1] 0.002478752

It is possible to do the above steps in one go by applying MC move

> require(isingLenzMC)

> set.seed(123456)

> N <- 7

> myInitialConfig <- genConfig1D(N)

> myInitialConfig

[1] 1 1 -1 -1 -1 -1 1

> # 1 step Monte Carlo move

> isStep1D(1.0, myInitialConfig, 1.0, 1.0, 1) # Metropolis

$vec

[1] 1 1 -1 -1 -1 -1 1

$accept

[1] 0

4 Simulations

4.1 Free Energy

The partition function ZN can be computed by using the eigenvalues λ1 and λ2
of the transfer matrix.

ZN (J,H) = λN1 + λN2

For example for 7 sites

> Tm <- transferMatrix(1.0, 1.0, 1.0)

> # Free Energy

> log(Tm$evalues[1]^7 + Tm$evalues[2]^7)

[1] 14.01997
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4.2 Magnetisation: Finite Size Effects

The average magnetisation of the 1D ising model is simply defined as the average
of the lattice site values in the finite case. However, in theory magnetisation of
1D bulk system (N →∞) is analytically known

Mensemble(H,T ) = exp(J/kBT )sinh(H/kBT )
(
exp(2K)sinh2(J/kBT )+exp(−2J/kBT )

)−1/2

This is approximately 0.9934346 for J = H = 1/kBT = 1.0. This value
represents the ensemble average magnetisation for the bulk system.

Now if we simulate a long enough lattice, we see that simulated magnetisa-
tion, time average value, approaches the ensemble average magnetisation value.

> require(isingLenzMC)

> set.seed(123456)

> ensembleM <- 0.9934346

> N <- 200

> x <- genConfig1D(N)

> mcData <- isPerform1D(1.0, x, 1.0, 1.0, 10000, ensembleM, 1) # Metropolis

a member of mcData named list omegaM reports so called a fluctuation metric
over accepted steps, and it is defined as follows

ΩM (k) =
(

(

k∑
i=1

M i
ave)−Mensemble

)2
where M i

ave is the average magnetisation per site at a given accepted step i. It is
left as an exercise to see how this fluctuation mDetric changes with the system
size N . The larger the lattice, longer simulation needed to reach to ensemble
average.
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