scal_trips = non_gf_dat %>% filter(substr(ACTIVITY_CODE_1,1,3) == 'SES') # the scallop_area code has been added upstream to oracle table import # %>% # mutate(PROGRAM = substr(ACTIVITY_CODE_1, 9, 10)) %>% # mutate( SCALLOP_AREA = case_when(PROGRAM == 'OP' ~ 'OPEN' # , PROGRAM == 'NS' ~ 'NLS' # , PROGRAM == 'NN' ~ 'NLSN' # , PROGRAM == 'NH' ~ 'NLSS' # includes the NLS south Deep # , PROGRAM == 'NW' ~ 'NLSW' # , PROGRAM == '1S' ~ 'CAI' # , PROGRAM == '2S' ~ 'CAII' # , PROGRAM %in% c('MA', 'ET', 'EF', 'HC', 'DM') ~ 'MAA' # ) # ) %>% # mutate(SCALLOP_AREA = case_when(substr(ACTIVITY_CODE_1,1,3) == 'SES' ~ dplyr::coalesce(SCALLOP_AREA, 'OPEN')) # , ~SCALLOP_AREA) # scal_trips$ACCESSAREA[scal_trips$SCALLOP_AREA == 'OPEN'] = 'OPEN' stratvars_scalgf = c('SPECIES_STOCK' ,'CAMS_GEAR_GROUP' , 'MESHGROUP' , 'TRIPCATEGORY' , 'ACCESSAREA' , 'SCALLOP_AREA') scal_gf_species = species[species$SPECIES_ITIS %in% c('172909', '172746'),] for(i in 1:length(scal_gf_species$SPECIES_ITIS)){ t1 = Sys.time() print(paste0('Running ', scal_gf_species$COMNAME[i])) # species_nespp3 = species$NESPP3[i] species_itis = scal_gf_species$SPECIES_ITIS[i] #--------------------------------------------------------------------------# # Support table import by species # GEAR TABLE CAMS_GEAR_STRATA = tbl(bcon, sql(' select * from MAPS.CAMS_GEARCODE_STRATA')) %>% collect() %>% dplyr::rename(GEARCODE = VTR_GEAR_CODE) %>% filter(SPECIES_ITIS == '079718') %>% # scallop strata needed here.. or go with above code dplyr::select(-NESPP3, -SPECIES_ITIS) # Stat areas table # unique stat areas for stock ID if needed STOCK_AREAS = tbl(bcon, sql('select * from MAPS.CAMS_STATAREA_STOCK')) %>% filter(SPECIES_ITIS == species_itis) %>% collect() %>% group_by(AREA_NAME, SPECIES_ITIS) %>% distinct(STAT_AREA) %>% mutate(AREA = as.character(STAT_AREA) , SPECIES_STOCK = AREA_NAME) %>% ungroup() # %>% # dplyr::select(SPECIES_STOCK, AREA) # Mortality table CAMS_DISCARD_MORTALITY_STOCK = tbl(bcon, sql("select * from MAPS.CAMS_DISCARD_MORTALITY_STOCK")) %>% collect() %>% mutate(SPECIES_STOCK = AREA_NAME , GEARCODE = CAMS_GEAR_GROUP , CAMS_GEAR_GROUP = as.character(CAMS_GEAR_GROUP)) %>% select(-AREA_NAME) %>% # mutate(CAREA = as.character(STAT_AREA)) %>% # filter(NESPP3 == species_nespp3) %>% filter(SPECIES_ITIS == species_itis) %>% dplyr::select(-SPECIES_ITIS) %>% dplyr::rename(DISC_MORT_RATIO = Discard_Mortality_Ratio) #--------------------------------------------------------------------------------# # haddock example trips with full strata either in year_t or year _t-1 #--------------------------------------------------------------------------------# # print(paste0("Getting in-season rates for ", species_itis, " ", FY)) # make tables ddat_focal <- scal_trips %>% filter(SCAL_YEAR == FY) %>% ## time element is here!! NOTE THE SCAL YEAR>>> filter(AREA %in% STOCK_AREAS$AREA) %>% mutate(LIVE_POUNDS = SUBTRIP_KALL ,SEADAYS = 0 , NESPP3 = NESPP3_FINAL) %>% left_join(., y = STOCK_AREAS, by = 'AREA') %>% left_join(., y = CAMS_GEAR_STRATA, by = 'GEARCODE') %>% left_join(., y = CAMS_DISCARD_MORTALITY_STOCK , by = c('SPECIES_STOCK', 'CAMS_GEAR_GROUP') ) %>% dplyr::select(-SPECIES_ITIS.y, -GEARCODE.y) %>% dplyr::rename(SPECIES_ITIS = 'SPECIES_ITIS.x', GEARCODE = 'GEARCODE.x') %>% relocate('COMMON_NAME','SPECIES_ITIS','NESPP3','SPECIES_STOCK','CAMS_GEAR_GROUP','DISC_MORT_RATIO') ddat_prev <- scal_trips %>% filter(SCAL_YEAR == FY-1) %>% ## time element is here!! NOTE THE SCAL YEAR>>> filter(AREA %in% STOCK_AREAS$AREA) %>% mutate(LIVE_POUNDS = SUBTRIP_KALL ,SEADAYS = 0 , NESPP3 = NESPP3_FINAL) %>% left_join(., y = STOCK_AREAS, by = 'AREA') %>% left_join(., y = CAMS_GEAR_STRATA, by = 'GEARCODE') %>% left_join(., y = CAMS_DISCARD_MORTALITY_STOCK , by = c('SPECIES_STOCK', 'CAMS_GEAR_GROUP') ) %>% dplyr::select(-SPECIES_ITIS.y, -GEARCODE.y) %>% dplyr::rename(SPECIES_ITIS = 'SPECIES_ITIS.x', GEARCODE = 'GEARCODE.x') %>% relocate('COMMON_NAME','SPECIES_ITIS','NESPP3','SPECIES_STOCK','CAMS_GEAR_GROUP','DISC_MORT_RATIO') # need to slice the first record for each observed trip.. these trips are multi rowed while unobs trips are single row.. # need to select only discards for species evaluated. All OBS trips where nothing of that species was disacrded Must be zero! ddat_focal_scal = ddat_focal %>% filter(!is.na(LINK1)) %>% mutate(SPECIES_EVAL_DISCARD = case_when(SPECIES_ITIS == species_itis ~ DISCARD )) %>% mutate(SPECIES_EVAL_DISCARD = coalesce(SPECIES_EVAL_DISCARD, 0)) %>% group_by(LINK1, VTRSERNO) %>% arrange(desc(SPECIES_EVAL_DISCARD)) %>% slice(1) %>% ungroup() # and join to the unobserved trips ddat_focal_scal = ddat_focal_scal %>% union_all(ddat_focal %>% filter(is.na(LINK1)) %>% # group_by(VTRSERNO, CAMSID) %>% # slice(1) %>% ungroup() ) # if using the combined catch/obs table, which seems necessary for groundfish.. need to roll your own table to use with run_discard function # DO NOT NEED TO FILTER SPECIES HERE. NEED TO RETAIN ALL TRIPS. THE MAKE_BDAT_FOCAL.R FUNCTION TAKES CARE OF THIS. bdat_scal = ddat_focal %>% filter(!is.na(LINK1)) %>% mutate(DISCARD_PRORATE = DISCARD , OBS_AREA = AREA , OBS_HAUL_KALL_TRIP = OBS_KALL , PRORATE = 1) # set up trips table for previous year ddat_prev_scal = ddat_prev %>% filter(!is.na(LINK1)) %>% mutate(SPECIES_EVAL_DISCARD = case_when(SPECIES_ITIS == species_itis ~ DISCARD )) %>% mutate(SPECIES_EVAL_DISCARD = coalesce(SPECIES_EVAL_DISCARD, 0)) %>% group_by(LINK1, VTRSERNO) %>% arrange(desc(SPECIES_EVAL_DISCARD)) %>% slice(1) %>% ungroup() ddat_prev_scal = ddat_prev_scal %>% union_all(ddat_prev %>% filter(is.na(LINK1)) %>% # group_by(VTRSERNO, CAMSID) %>% # slice(1) %>% ungroup() ) # previous year observer data needed.. bdat_prev_scal = ddat_prev %>% filter(!is.na(LINK1)) %>% mutate(DISCARD_PRORATE = DISCARD , OBS_AREA = AREA , OBS_HAUL_KALL_TRIP = OBS_KALL , PRORATE = 1) # Run the discaRd functions on previous year d_prev = run_discard(bdat = bdat_prev_scal , ddat = ddat_prev_scal , c_o_tab = ddat_prev , species_itis = species_itis , stratvars = stratvars_scalgf # , aidx = c(1:length(stratvars)) , aidx = c(1:2) # uses GEAR as assumed ) # Run the discaRd functions on current year d_focal = run_discard(bdat = bdat_scal , ddat = ddat_focal_scal , c_o_tab = ddat_focal , species_itis = species_itis , stratvars = stratvars_scalgf # , aidx = c(1:length(stratvars)) # this makes sure this isn't used.. , aidx = c(1:2) # uses GEAR as assumed ) # summarize each result for convenience dest_strata_p = d_prev$allest$C %>% summarise(STRATA = STRATA , N = N , n = n , orate = round(n/N, 2) , drate = RE_mean , KALL = K, disc_est = round(D) , CV = round(RE_rse, 2) ) dest_strata_f = d_focal$allest$C %>% summarise(STRATA = STRATA , N = N , n = n , orate = round(n/N, 2) , drate = RE_mean , KALL = K, disc_est = round(D) , CV = round(RE_rse, 2) ) # substitute transition rates where needed trans_rate_df = dest_strata_f %>% left_join(., dest_strata_p, by = 'STRATA') %>% mutate(STRATA = STRATA , n_obs_trips_f = n.x , n_obs_trips_p = n.y , in_season_rate = drate.x , previous_season_rate = drate.y ) %>% mutate(n_obs_trips_p = coalesce(n_obs_trips_p, 0)) %>% mutate(trans_rate = get.trans.rate(l_observed_trips = n_obs_trips_f , l_assumed_rate = previous_season_rate , l_inseason_rate = in_season_rate ) ) %>% dplyr::select(STRATA , n_obs_trips_f , n_obs_trips_p , in_season_rate , previous_season_rate , trans_rate , CV_f = CV.x ) trans_rate_df = trans_rate_df %>% mutate(final_rate = case_when((in_season_rate != trans_rate & !is.na(trans_rate)) ~ trans_rate)) trans_rate_df$final_rate = coalesce(trans_rate_df$final_rate, trans_rate_df$in_season_rate) trans_rate_df_full = trans_rate_df full_strata_table = trans_rate_df_full %>% right_join(., y = d_focal$res, by = 'STRATA') %>% as_tibble() %>% mutate(SPECIES_ITIS_EVAL = species_itis , COMNAME_EVAL = species$COMNAME[i] , FISHING_YEAR = FY , FY_TYPE = FY_TYPE) %>% dplyr::rename(FULL_STRATA = STRATA) #----------------------------------------------------------------------- # join full and assumed strata tables #----------------------------------------------------------------------- # BROAD_STOCK_RATE_TABLE = d_focal$res %>% # group_by(SPECIES_STOCK) %>% # dplyr::summarise(BROAD_STOCK_RATE = mean(ARATE, na.rm = T)) # mean rate is max rate.. they are all the same within STOCK, as they should be # get a broad stock rate across all gears (no stratification) # NOTE: This is slightly different than what is used for GF trips. # For non-GF trips, the Assumed rate above is GEAR/MESH. BROAD_STOCK_RATE_TABLE = make_assumed_rate(bdat_scal , species_itis = species$SPECIES_ITIS[i] , stratvars = stratvars_scalgf[1]) %>% mutate(SPECIES_STOCK = STRATA , STRAT_DESC = paste(stratvars_scalgf[1], sep = '-')) %>% dplyr::rename('BROAD_STOCK_RATE' = 'dk') %>% dplyr::select(-STRATA, -KALL, -BYCATCH) print(paste0("Constructing output table for ", species_itis, " in SCALLOP YEAR ", FY)) joined_table = assign_strata(full_strata_table, stratvars_scalgf) %>% # dplyr::select(-STRATA_ASSUMED) %>% # not using this anymore here.. # dplyr::rename(STRATA_ASSUMED = STRATA) %>% # left_join(., y = trans_rate_df_pass2, by = c('STRATA_ASSUMED' = 'STRATA_a')) %>% left_join(x =., y = BROAD_STOCK_RATE_TABLE, by = c('SPECIES_STOCK')) %>% mutate(COAL_RATE = case_when(n_obs_trips_f >= 5 ~ trans_rate # this is an in season rate , n_obs_trips_f < 5 & n_obs_trips_p >=5 ~ trans_rate # this is a final IN SEASON rate taking transition into account , n_obs_trips_f < 5 & n_obs_trips_p < 5 ~ ARATE # assumed rate ) ) %>% mutate(COAL_RATE = coalesce(COAL_RATE, BROAD_STOCK_RATE)) %>% mutate(SPECIES_ITIS_EVAL = species_itis , COMNAME_EVAL = species$COMNAME[i] , FISHING_YEAR = FY , FY_TYPE = FY_TYPE) #----------------------------------------------------------------------- # add discard source #----------------------------------------------------------------------- # >5 trips in season gets in season rate # < 5 i nseason but >=5 past year gets transition # < 5 and < 5 in season, but >= 5 sector rolled up rate (in season) gets get sector rolled up rate # <5, <5, and <5 gets broad stock rate joined_table = joined_table %>% mutate(DISCARD_SOURCE = case_when(!is.na(LINK1) ~ 'O' , is.na(LINK1) & n_obs_trips_f >= 5 ~ 'I' # , is.na(LINK1) & COAL_RATE == previous_season_rate ~ 'P' , is.na(LINK1) & n_obs_trips_f < 5 & n_obs_trips_p >=5 ~ 'T' , is.na(LINK1) & n_obs_trips_f < 5 & n_obs_trips_p < 5 & !is.na(ARATE) ~ 'A' , is.na(LINK1) & n_obs_trips_f < 5 & n_obs_trips_p < 5 & is.na(ARATE) ~ 'B' # , is.na(LINK1) & # n_obs_trips_f < 5 & # n_obs_trips_p < 5 & ~ 'B' # n_obs_trips_f_a < 5 & # n_obs_trips_p_a < 5 ) # this may be replaced with model estimate! ) #----------------------------------------------------------------------- # make sure CV type matches DISCARD SOURCE} #----------------------------------------------------------------------- # obs trips get 0, broad stock rate is NA joined_table = joined_table %>% mutate(CV = case_when(DISCARD_SOURCE == 'O' ~ 0 , DISCARD_SOURCE == 'I' ~ CV_f , DISCARD_SOURCE == 'T' ~ CV_f # , DISCARD_SOURCE == 'A' ~ CV_f_a # , DISCARD_SOURCE == 'AT' ~ CV_f_a ) # , DISCARD_SOURCE == 'B' ~ NA ) # Make note of the stratification variables used according to discard source strata_scalgf = paste(stratvars_scalgf, collapse = ';') strata_scalgf_a = paste(stratvars_scalgf[1:2], collapse = ';') strata_scalgf_b = stratvars_scalgf[1] joined_table = joined_table %>% mutate(STRATA_USED = case_when(DISCARD_SOURCE == 'O' ~ '' , DISCARD_SOURCE == 'I' ~ strata_scalgf , DISCARD_SOURCE == 'T' ~ strata_scalgf , DISCARD_SOURCE == 'A' ~ strata_scalgf_a , DISCARD_SOURCE == 'B' ~ strata_scalgf_b ) ) #----------------------------------------------------------------------- # get the discard for each trip using COAL_RATE} #----------------------------------------------------------------------- # discard mort ratio tht are NA for odd gear types (e.g. cams gear 0) get a 1 mort ratio. # the KALLs should be small.. joined_table = joined_table %>% mutate(DISC_MORT_RATIO = coalesce(DISC_MORT_RATIO, 1)) %>% mutate(DISCARD = case_when(!is.na(LINK1) ~ DISC_MORT_RATIO*OBS_DISCARD , is.na(LINK1) ~ DISC_MORT_RATIO*COAL_RATE*LIVE_POUNDS) ) # saveRDS(joined_table, file = paste0('~/PROJECTS/discaRd/CAMS/MODULES/GROUNDFISH/OUTPUT/discard_est_', species_itis, '_non_gftrips.RDS')) fst::write_fst(x = joined_table, path = paste0('~/PROJECTS/discaRd/CAMS/MODULES/APRIL/OUTPUT/discard_est_', species_itis, '_scal_trips_SCAL', FY,'.fst')) t2 = Sys.time() print(paste(species_itis, ' RAN IN ', round(difftime(t2, t1, units = "mins"),2), ' MINUTES', sep = '')) }
# for(j in 2018:2019){ t1 = Sys.time() GF_YEAR = FY for(i in 1:length(scal_gf_species$SPECIES_ITIS)){ print(paste0('Adding scallop trip estimates of: ', scal_gf_species$COMNAME[i], ' for Groundfish Year ', GF_YEAR)) sp_itis = scal_gf_species$SPECIES_ITIS[i] # get only the non-gf trips for each species and fishing year gf_file_dir = '~/PROJECTS/discaRd/CAMS/MODULES/GROUNDFISH/OUTPUT/' gf_files = list.files(gf_file_dir, pattern = paste0('discard_est_', sp_itis), full.names = T) gf_files = gf_files[grep(GF_YEAR, gf_files)] gf_files = gf_files[grep('non_gf', gf_files)] # get list all scallop trips bridging fishing years scal_file_dir = '~/PROJECTS/discaRd/CAMS/MODULES/APRIL/OUTPUT/' scal_files = list.files(scal_file_dir, pattern = paste0('discard_est_', sp_itis), full.names = T) # read in files res_scal = lapply(as.list(scal_files), function(x) fst::read_fst(x)) res_gf = lapply(as.list(gf_files), function(x) fst::read_fst(x)) # create standard output table structures for scallop trips outlist <- lapply(res_scal, function(x) { x %>% mutate(GF_STOCK_DEF = paste0(COMNAME_EVAL, '-', SPECIES_STOCK)) %>% dplyr::select(-COMMON_NAME, -SPECIES_ITIS) %>% dplyr::rename('STRATA_FULL' = 'FULL_STRATA' , 'CAMS_DISCARD_RATE' = 'COAL_RATE' , 'COMMON_NAME' = 'COMNAME_EVAL' , 'SPECIES_ITIS' = 'SPECIES_ITIS_EVAL' , 'ACTIVITY_CODE' = 'ACTIVITY_CODE_1' , 'N_OBS_TRIPS_F' = 'n_obs_trips_f' ) %>% mutate(DATE_RUN = as.character(Sys.Date()) , FY = as.integer(FY)) %>% dplyr::select( DATE_RUN, FY, YEAR, MONTH, SPECIES_ITIS, COMMON_NAME, FY_TYPE, ACTIVITY_CODE, VTRSERNO, CAMSID, TRIP_TYPE, GF, AREA, LINK1, N_OBS_TRIPS_F, STRATA_USED, STRATA_FULL, STRATA_ASSUMED, DISCARD_SOURCE, OBS_DISCARD, SUBTRIP_KALL, BROAD_STOCK_RATE, CAMS_DISCARD_RATE, DISC_MORT_RATIO, DISCARD, CV, SPECIES_STOCK, CAMS_GEAR_GROUP, MESHGROUP, SECTID, EM, REDFISH_EXEMPTION, SNE_SMALLMESH_EXEMPTION, XLRG_GILLNET_EXEMPTION, TRIPCATEGORY, ACCESSAREA, SCALLOP_AREA # eval(strata_unique) ) } ) rm(res_scal) assign(paste0('outlist_df_scal'), do.call(rbind, outlist)) rm(outlist) # now do the same for GF trips outlist <- lapply(res_gf, function(x) { x %>% mutate(GF_STOCK_DEF = paste0(COMNAME_EVAL, '-', SPECIES_STOCK)) %>% dplyr::select(-COMMON_NAME, -SPECIES_ITIS) %>% dplyr::rename('STRATA_FULL' = 'FULL_STRATA' , 'CAMS_DISCARD_RATE' = 'COAL_RATE' , 'COMMON_NAME' = 'COMNAME_EVAL' , 'SPECIES_ITIS' = 'SPECIES_ITIS_EVAL' , 'ACTIVITY_CODE' = 'ACTIVITY_CODE_1' , 'N_OBS_TRIPS_F' = 'n_obs_trips_f' ) %>% mutate(DATE_RUN = as.character(Sys.Date()) , FY = as.integer(FY)) %>% dplyr::select( DATE_RUN, FY, YEAR, MONTH, SPECIES_ITIS, COMMON_NAME, FY_TYPE, ACTIVITY_CODE, VTRSERNO, CAMSID, TRIP_TYPE, GF, AREA, LINK1, N_OBS_TRIPS_F, STRATA_USED, STRATA_FULL, STRATA_ASSUMED, DISCARD_SOURCE, OBS_DISCARD, SUBTRIP_KALL, BROAD_STOCK_RATE, CAMS_DISCARD_RATE, DISC_MORT_RATIO, DISCARD, CV, SPECIES_STOCK, CAMS_GEAR_GROUP, MESHGROUP, SECTID, EM, REDFISH_EXEMPTION, SNE_SMALLMESH_EXEMPTION, XLRG_GILLNET_EXEMPTION, TRIPCATEGORY, ACCESSAREA # SCALLOP_AREA # eval(strata_unique) ) %>% mutate(SCALLOP_AREA = '') } ) rm(res_gf) assign(paste0('outlist_df_',sp_itis,'_',GF_YEAR), do.call(rbind, outlist)) rm(outlist) t1 = get(paste0('outlist_df_',sp_itis,'_',GF_YEAR)) t2 = get(paste0('outlist_df_scal')) # index scallop records present in groundfish year table t2idx = t2$VTRSERNO %in% t1$VTRSERNO & t2$CAMSID %in% t1$CAMSID # index records in groundfish table to be removed t1idx = t1$VTRSERNO %in% t2$VTRSERNO & t1$CAMSID %in% t2$CAMSID # swap the scallop estimated trips into the groundfish records t1[t1idx,] = t2[t2idx,] # test against the scallop fy 19 t2 %>% filter(YEAR == 2019 & MONTH >= 4) %>% bind_rows(t2 %>% filter(YEAR == 2020 & MONTH < 4)) %>% group_by(SPECIES_STOCK, ACCESSAREA, TRIP_TYPE) %>% dplyr::summarise(round(sum(DISCARD, na.rm = T))) %>% write.csv(paste0('~/PROJECTS/discaRd/CAMS/MODULES/APRIL/OUTPUT/', sp_itis,'_for_SCAL_YEAR_2019.csv'), row.names = F) write_fst(x = t1, path = gf_files) t2 = Sys.time() print(paste('Scallop subsitution took: ', round(difftime(t2, t1, units = "mins"),2), ' MINUTES', sep = '')) # look at the GF table with scallop trips swapped in. tHIS WILL BE LOWER SINCE THE FISHIGN YEARS BEGIN AT DIFFERNT MONTHS # t1 %>% # filter(YEAR == 2019 & MONTH >= 5) %>% # bind_rows(t1 %>% # filter(YEAR == 2020 & MONTH < 4)) %>% # filter(substr(ACTIVITY_CODE, 1,3) == 'SES') %>% # group_by(SPECIES_STOCK, ACCESSAREA, SPECIES_ITIS, TRIP_TYPE) %>% # dplyr::summarise(round(sum(DISCARD, na.rm = T))) # write.csv(paste0('~/PROJECTS/discaRd/CAMS/MODULES/APRIL/OUTPUT/', sp_itis,'_for_SCAL_YEAR_2019.csv'), row.names = F) } # }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.