# evaluate groundfish results
# which geartypes have no discard source?
final_table %>%
filter(is.na(DISCARD_SOURCE)) %>%
group_by(CAMS_GEAR_GROUP) %>%
dplyr::summarise(nvtr = n_distinct(VTRSERNO))
## primarily lobster pots. some shrimp trawls, then handlines and unknowns
# what is the discard rate for these trips?
res_list[[1]] %>%
filter(is.na(DISCARD_SOURCE)) %>%
dplyr::select(
DISCARD_SOURCE,
CAMS_GEAR_GROUP,
ACTIVITY_CODE_1,
VTRSERNO,
ARATE,
CRATE,
DISC_RATE,
STRATA,
STRATA_ASSUMED,
LINK1,
EST_DISCARD,
DISCARD,
OBS_DISCARD
)
## no assumed rate because no obsevations
## changing the make these DISCARD_SOURCE = 'A'
# make a smaller output table
dplyr::select(
SPECIES_ITIS_EVAL,
DISCARD_SOURCE,
ACTIVITY_CODE_1,
VTRSERNO,
ARATE,
CRATE,
DISC_RATE,
STRATA,
STRATA_ASSUMED,
LINK1,
EST_DISCARD,
DISCARD,
OBS_DISCARD,
eval(stratvars)
)
# --------------------------------------------
# Check Caless's results for EGB
# re-ran the haddock estimate
# recall the GEAR mathcing table had been updated
hadd = readRDS('discard_est_164744.RDS')
hadd %>%
filter(substr(ACTIVITY_CODE_1, 1, 3) == 'NMS' &
SPECIES_STOCK == 'EGB') %>%
group_by(DISCARD_SOURCE) %>%
dplyr::summarise(
OBS_DISCARD = sum(OBS_DISCARD, na.rm = T),
FINAL_DISCARD = sum(DISCARD, na.rm = T)
)
# look by STRATA
hadd %>%
filter(substr(ACTIVITY_CODE_1, 1, 3) == 'NMS' &
SPECIES_STOCK == 'EGB') %>%
group_by(STRATA) %>%
dplyr::summarise(
OBS_DISCARD = sum(OBS_DISCARD, na.rm = T),
FINAL_DISCARD = sum(DISCARD, na.rm = T)
)
# difference now much smaller
# A tibble: 3 x 3
DISCARD_SOURCE OBS_DISCARD FINAL_DISCARD
<chr> <dbl> <dbl>
1 A 0 880.
2 E 0 66779.
3 O 33926 33926
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.