knitr::opts_chunk$set(echo=FALSE
, warning = FALSE
, message = FALSE
, cache = FALSE
, progress = TRUE
, verbose = FALSE
, comment = F
, error = FALSE
, dev = 'png'
, dpi = 200
, prompt = F
, results='hide')
options(dplyr.summarise.inform = FALSE)
# Stratification variables
stratvars = c( 'SPECIES_STOCK'
# , 'GEARCODE' # this is the SECGEAR_MAPPED variable
, 'CAMS_GEAR_GROUP'
, 'MESHGROUP'
, 'SECTID'
, 'EM'
, "REDFISH_EXEMPTION"
, "SNE_SMALLMESH_EXEMPTION"
, "XLRG_GILLNET_EXEMPTION"
)
# add a second SECTORID for Common pool/all others
for(i in 1:length(species$SPECIES_ITIS)){
t1 = Sys.time()
print(paste0('Running ', species$COMNAME[i], ' for Fishing Year ', FY))
# species_nespp3 = species$NESPP3[i]
species_itis = species$SPECIES_ITIS[i]
#---#
# Support table import by species
# GEAR TABLE
CAMS_GEAR_STRATA = tbl(con_maps, sql(' select * from MAPS.CAMS_GEARCODE_STRATA')) %>%
collect() %>%
dplyr::rename(GEARCODE = VTR_GEAR_CODE) %>%
# filter(NESPP3 == species_nespp3) %>%
filter(SPECIES_ITIS == species_itis) %>%
dplyr::select(-NESPP3, -SPECIES_ITIS)
# Stat areas table
# unique stat areas for stock ID if needed
STOCK_AREAS = tbl(con_maps, sql('select * from MAPS.CAMS_STATAREA_STOCK')) %>%
# filter(NESPP3 == species_nespp3) %>% # removed & AREA_NAME == species_stock
filter(SPECIES_ITIS == species_itis) %>%
collect() %>%
group_by(AREA_NAME, SPECIES_ITIS) %>%
distinct(STAT_AREA) %>%
mutate(AREA = as.character(STAT_AREA)
, SPECIES_STOCK = AREA_NAME) %>%
ungroup()
# %>%
# dplyr::select(SPECIES_STOCK, AREA)
# Mortality table
CAMS_DISCARD_MORTALITY_STOCK = tbl(con_maps, sql("select * from MAPS.CAMS_DISCARD_MORTALITY_STOCK")) %>%
collect() %>%
mutate(SPECIES_STOCK = AREA_NAME
, GEARCODE = CAMS_GEAR_GROUP
, CAMS_GEAR_GROUP = as.character(CAMS_GEAR_GROUP)) %>%
select(-AREA_NAME) %>%
# mutate(CAREA = as.character(STAT_AREA)) %>%
# filter(NESPP3 == species_nespp3) %>%
filter(SPECIES_ITIS == species_itis) %>%
dplyr::select(-SPECIES_ITIS)
# %>%
# dplyr::rename(DISC_MORT_RATIO = Discard_Mortality_Ratio)
#---------#
# haddock example trips with full strata either in year_t or year _t-1
#---------#
# print(paste0("Getting in-season rates for ", species_itis, " ", FY))
# make tables
ddat_focal <- gf_dat %>%
filter(GF_YEAR == FY) %>% ## time element is here!!
filter(AREA %in% STOCK_AREAS$AREA) %>%
mutate(LIVE_POUNDS = SUBTRIP_KALL
,SEADAYS = 0
) %>%
left_join(., y = STOCK_AREAS, by = 'AREA') %>%
left_join(., y = CAMS_GEAR_STRATA, by = 'GEARCODE') %>%
left_join(., y = CAMS_DISCARD_MORTALITY_STOCK
, by = c('SPECIES_STOCK', 'CAMS_GEAR_GROUP')
) %>%
dplyr::select(-SPECIES_ITIS.y, -GEARCODE.y, -COMMON_NAME.y, -NESPP3.y) %>%
dplyr::rename(SPECIES_ITIS = 'SPECIES_ITIS.x', GEARCODE = 'GEARCODE.x',COMMON_NAME = COMMON_NAME.x, NESPP3 = NESPP3.x) %>%
relocate('COMMON_NAME','SPECIES_ITIS','NESPP3','SPECIES_STOCK','CAMS_GEAR_GROUP','DISC_MORT_RATIO')
ddat_prev <- gf_dat %>%
filter(GF_YEAR == FY-1) %>% ## time element is here!!
filter(AREA %in% STOCK_AREAS$AREA) %>%
mutate(LIVE_POUNDS = SUBTRIP_KALL
,SEADAYS = 0
) %>%
left_join(., y = STOCK_AREAS, by = 'AREA') %>%
left_join(., y = CAMS_GEAR_STRATA, by = 'GEARCODE') %>%
left_join(., y = CAMS_DISCARD_MORTALITY_STOCK
, by = c('SPECIES_STOCK', 'CAMS_GEAR_GROUP')
) %>%
dplyr::select(-SPECIES_ITIS.y, -GEARCODE.y, -COMMON_NAME.y, -NESPP3.y) %>%
dplyr::rename(SPECIES_ITIS = 'SPECIES_ITIS.x', GEARCODE = 'GEARCODE.x',COMMON_NAME = COMMON_NAME.x, NESPP3 = NESPP3.x) %>%
relocate('COMMON_NAME','SPECIES_ITIS','NESPP3','SPECIES_STOCK','CAMS_GEAR_GROUP','DISC_MORT_RATIO')
# need to slice the first record for each observed trip.. these trips are multi rowed while unobs trips are single row..
# need to select only discards for species evaluated. All OBS trips where nothing of that species was disacrded Must be zero!
ddat_focal_gf = ddat_focal %>%
filter(!is.na(LINK1)) %>%
mutate(SPECIES_EVAL_DISCARD = case_when(SPECIES_ITIS == species_itis ~ DISCARD
)) %>%
mutate(SPECIES_EVAL_DISCARD = coalesce(SPECIES_EVAL_DISCARD, 0)) %>%
group_by(LINK1, CAMS_SUBTRIP) %>%
arrange(desc(SPECIES_EVAL_DISCARD)) %>%
slice(1) %>%
ungroup()
# and join to the unobserved trips
ddat_focal_gf = ddat_focal_gf %>%
union_all(ddat_focal %>%
filter(is.na(LINK1))
# %>%
# group_by(VTRSERNO) %>%
# slice(1) %>%
# ungroup()
)
# if using the combined catch/obs table, which seems necessary for groundfish.. need to roll your own table to use with run_discard function
# DO NOT NEED TO FILTER SPECIES HERE. NEED TO RETAIN ALL TRIPS. THE MAKE_BDAT_FOCAL.R FUNCTION TAKES CARE OF THIS.
bdat_gf = ddat_focal %>%
filter(!is.na(LINK1)) %>%
mutate(DISCARD_PRORATE = DISCARD
, OBS_AREA = AREA
, OBS_HAUL_KALL_TRIP = OBS_KALL
, PRORATE = 1)
# set up trips table for previous year
ddat_prev_gf = ddat_prev %>%
filter(!is.na(LINK1)) %>%
mutate(SPECIES_EVAL_DISCARD = case_when(SPECIES_ITIS == species_itis ~ DISCARD
)) %>%
mutate(SPECIES_EVAL_DISCARD = coalesce(SPECIES_EVAL_DISCARD, 0)) %>%
group_by(LINK1, CAMS_SUBTRIP) %>%
arrange(desc(SPECIES_EVAL_DISCARD)) %>%
slice(1) %>%
ungroup()
ddat_prev_gf = ddat_prev_gf %>%
union_all(ddat_prev %>%
filter(is.na(LINK1))
# %>%
# group_by(VTRSERNO) %>%
# slice(1) %>%
# ungroup()
)
# previous year observer data needed..
bdat_prev_gf = ddat_prev %>%
filter(!is.na(LINK1)) %>%
mutate(DISCARD_PRORATE = DISCARD
, OBS_AREA = AREA
, OBS_HAUL_KALL_TRIP = OBS_KALL
, PRORATE = 1)
# Run the discaRd functions on previous year
d_prev = run_discard(bdat = bdat_prev_gf
, ddat = ddat_prev_gf
, c_o_tab = ddat_prev
# , year = 2018
# , species_nespp3 = species_nespp3
, species_itis = species_itis
, stratvars = stratvars
, aidx = c(1:length(stratvars))
)
# Run the discaRd functions on current year
d_focal = run_discard(bdat = bdat_gf
, ddat = ddat_focal_gf
, c_o_tab = ddat_focal
# , year = 2019
# , species_nespp3 = '081' # haddock...
# , species_nespp3 = species_nespp3 #'081' #cod...
, species_itis = species_itis
, stratvars = stratvars
, aidx = c(1:length(stratvars)) # this makes sure this isn't used..
)
# summarize each result for convenience
dest_strata_p = d_prev$allest$C %>% summarise(STRATA = STRATA
, N = N
, n = n
, orate = round(n/N, 2)
, drate = RE_mean
, KALL = K, disc_est = round(D)
, CV = round(RE_rse, 2)
)
dest_strata_f = d_focal$allest$C %>% summarise(STRATA = STRATA
, N = N
, n = n
, orate = round(n/N, 2)
, drate = RE_mean
, KALL = K, disc_est = round(D)
, CV = round(RE_rse, 2)
)
# substitute transition rates where needed
trans_rate_df = dest_strata_f %>%
left_join(., dest_strata_p, by = 'STRATA') %>%
mutate(STRATA = STRATA
, n_obs_trips_f = n.x
, n_obs_trips_p = n.y
, in_season_rate = drate.x
, previous_season_rate = drate.y
) %>%
mutate(n_obs_trips_p = coalesce(n_obs_trips_p, 0)) %>%
mutate(trans_rate = get.trans.rate(l_observed_trips = n_obs_trips_f
, l_assumed_rate = previous_season_rate
, l_inseason_rate = in_season_rate
)
) %>%
dplyr::select(STRATA
, n_obs_trips_f
, n_obs_trips_p
, in_season_rate
, previous_season_rate
, trans_rate
, CV_f = CV.x
)
trans_rate_df = trans_rate_df %>%
mutate(final_rate = case_when((in_season_rate != trans_rate & !is.na(trans_rate)) ~ trans_rate))
trans_rate_df$final_rate = coalesce(trans_rate_df$final_rate, trans_rate_df$in_season_rate)
trans_rate_df_full = trans_rate_df
full_strata_table = trans_rate_df_full %>%
right_join(., y = d_focal$res, by = 'STRATA') %>%
as_tibble() %>%
mutate(SPECIES_ITIS_EVAL = species_itis
, COMNAME_EVAL = species$COMNAME[i]
, FISHING_YEAR = FY
, FY_TYPE = FY_TYPE) %>%
dplyr::rename(FULL_STRATA = STRATA)
#
# SECTOR ROLLUP
#
# print(paste0("Getting rates across sectors for ", species_itis, " ", FY))
stratvars_assumed = c("SPECIES_STOCK"
, "CAMS_GEAR_GROUP"
# , "GEARCODE"
, "MESHGROUP"
, "SECTOR_TYPE")
### All tables in previous run can be re-used wiht diff stratification
# Run the discaRd functions on previous year
d_prev_pass2 = run_discard(bdat = bdat_prev_gf
, ddat = ddat_prev_gf
, c_o_tab = ddat_prev
# , year = 2018
# , species_nespp3 = species_nespp3
, species_itis = species_itis
, stratvars = stratvars_assumed
# , aidx = c(1:length(stratvars_assumed)) # this makes sure this isn't used..
, aidx = c(1) # this creates an unstratified broad stock rate
)
# Run the discaRd functions on current year
d_focal_pass2 = run_discard(bdat = bdat_gf
, ddat = ddat_focal_gf
, c_o_tab = ddat_focal
# , year = 2019
# , species_nespp3 = '081' # haddock...
# , species_nespp3 = species_nespp3 #'081' #cod...
, species_itis = species_itis
, stratvars = stratvars_assumed
# , aidx = c(1:length(stratvars_assumed)) # this makes sure this isn't used..
, aidx = c(1) # this creates an unstratified broad stock rate
)
# summarize each result for convenience
dest_strata_p_pass2 = d_prev_pass2$allest$C %>% summarise(STRATA = STRATA
, N = N
, n = n
, orate = round(n/N, 2)
, drate = RE_mean
, KALL = K, disc_est = round(D)
, CV = round(RE_rse, 2)
)
dest_strata_f_pass2 = d_focal_pass2$allest$C %>% summarise(STRATA = STRATA
, N = N
, n = n
, orate = round(n/N, 2)
, drate = RE_mean
, KALL = K, disc_est = round(D)
, CV = round(RE_rse, 2)
)
# substitute transition rates where needed
trans_rate_df_pass2 = dest_strata_f_pass2 %>%
left_join(., dest_strata_p_pass2, by = 'STRATA') %>%
mutate(STRATA = STRATA
, n_obs_trips_f = n.x
, n_obs_trips_p = n.y
, in_season_rate = drate.x
, previous_season_rate = drate.y
) %>%
mutate(n_obs_trips_p = coalesce(n_obs_trips_p, 0)) %>%
mutate(trans_rate = get.trans.rate(l_observed_trips = n_obs_trips_f
, l_assumed_rate = previous_season_rate
, l_inseason_rate = in_season_rate
)
) %>%
dplyr::select(STRATA
, n_obs_trips_f
, n_obs_trips_p
, in_season_rate
, previous_season_rate
, trans_rate
, CV_f = CV.x
)
trans_rate_df_pass2 = trans_rate_df_pass2 %>%
mutate(final_rate = case_when((in_season_rate != trans_rate & !is.na(trans_rate)) ~ trans_rate))
trans_rate_df_pass2$final_rate = coalesce(trans_rate_df_pass2$final_rate, trans_rate_df_pass2$in_season_rate)
# get a table of broad stock rates using discaRd functions. Previosuly we used sector rollupresults (ARATE in pass2)
BROAD_STOCK_RATE_TABLE = list()
kk = 1
ustocks = bdat_gf$SPECIES_STOCK %>% unique()
for(k in ustocks){
BROAD_STOCK_RATE_TABLE[[kk]] = get_broad_stock_rate(bdat = bdat_gf
, ddat_focal_sp = ddat_focal_gf
, ddat_focal = ddat_focal
, species_itis = species_itis
, stratvars = stratvars[1]
# , aidx = 1
, stock = k
)
kk = kk+1
}
BROAD_STOCK_RATE_TABLE = do.call(rbind, BROAD_STOCK_RATE_TABLE)
rm(kk, k)
#
# BROAD_STOCK_RATE_TABLE = d_focal_pass2$res %>%
# group_by(SPECIES_STOCK) %>%
# dplyr::summarise(BROAD_STOCK_RATE = mean(ARATE)) # mean rate is max rate.. they are all the same within STOCK, as they should be
# make names specific to the sector rollup pass
names(trans_rate_df_pass2) = paste0(names(trans_rate_df_pass2), '_a')
#
# join full and assumed strata tables
#
# print(paste0("Constructing output table for ", species_itis, " ", FY))
joined_table = assign_strata(full_strata_table, stratvars_assumed) %>%
dplyr::select(-STRATA_ASSUMED) %>% # not using this anymore here..
dplyr::rename(STRATA_ASSUMED = STRATA) %>%
left_join(., y = trans_rate_df_pass2, by = c('STRATA_ASSUMED' = 'STRATA_a')) %>%
left_join(x =., y = BROAD_STOCK_RATE_TABLE, by = 'SPECIES_STOCK') %>%
mutate(COAL_RATE = case_when(n_obs_trips_f >= 5 ~ final_rate # this is an in season rate
, n_obs_trips_f < 5 &
n_obs_trips_p >=5 ~ final_rate # this is a final IN SEASON rate taking transition into account
, n_obs_trips_f < 5 &
n_obs_trips_p < 5 ~ trans_rate_a # this is an final assumed rate taking trasnition into account
)
) %>%
mutate(COAL_RATE = coalesce(COAL_RATE, BROAD_STOCK_RATE)) %>%
mutate(SPECIES_ITIS_EVAL = species_itis
, COMNAME_EVAL = species$COMNAME[i]
, FISHING_YEAR = FY
, FY_TYPE = FY_TYPE)
#
# add discard source
#
# >5 trips in season gets in season rate
# < 5 i nseason but >=5 past year gets transition
# < 5 and < 5 in season, but >= 5 sector rolled up rate (in season) gets get sector rolled up rate
# <5, <5, and <5 gets broad stock rate
joined_table = joined_table %>%
mutate(DISCARD_SOURCE = case_when(!is.na(LINK1) ~ 'O'
, is.na(LINK1) &
n_obs_trips_f >= 5 ~ 'I'
# , is.na(LINK1) & COAL_RATE == previous_season_rate ~ 'P'
, is.na(LINK1) &
n_obs_trips_f < 5 &
n_obs_trips_p >=5 ~ 'T' # T only applies to full in-season strata
, is.na(LINK1) &
n_obs_trips_f < 5 &
n_obs_trips_p < 5 &
n_obs_trips_f_a >= 5 ~ 'A' # Assumed means Sector, Gear, Mesh
, is.na(LINK1) &
n_obs_trips_f < 5 &
n_obs_trips_p < 5 &
n_obs_trips_f_a < 5 &
n_obs_trips_p_a >= 5 ~ 'B' # Broad stock is only for GF now
, is.na(LINK1) &
n_obs_trips_f < 5 &
n_obs_trips_p < 5 &
n_obs_trips_f_a < 5 &
n_obs_trips_p_a < 5 ~ 'B'
) # this may be replaced with model estimate!
)
#
# make sure CV type matches DISCARD SOURCE}
#
# obs trips get 0, broad stock rate is NA
joined_table = joined_table %>%
mutate(CV = case_when(DISCARD_SOURCE == 'O' ~ 0
, DISCARD_SOURCE == 'I' ~ CV_f
, DISCARD_SOURCE == 'T' ~ CV_f
, DISCARD_SOURCE == 'A' ~ CV_f_a
, DISCARD_SOURCE == 'B' ~ CV_b
# , DISCARD_SOURCE == 'AT' ~ CV_f_a
) # , DISCARD_SOURCE == 'B' ~ NA
)
# Make note of the stratification variables used according to discard source
strata_f = paste(stratvars, collapse = ';')
strata_a = paste(stratvars_assumed, collapse = ';')
strata_b = stratvars[1]
joined_table = joined_table %>%
mutate(STRATA_USED = case_when(DISCARD_SOURCE == 'O' ~ ''
, DISCARD_SOURCE == 'I' ~ strata_f
, DISCARD_SOURCE == 'T' ~ strata_f
, DISCARD_SOURCE == 'A' ~ strata_a
, DISCARD_SOURCE == 'B' ~ strata_b
)
)
#
# get the discard for each trip using COAL_RATE}
#
# discard mort ratio tht are NA for odd gear types (e.g. cams gear 0) get a 1 mort ratio.
# the KALLs should be small..
joined_table = joined_table %>%
mutate(DISC_MORT_RATIO = coalesce(DISC_MORT_RATIO, 1)) %>%
mutate(DISCARD = case_when(!is.na(LINK1) ~ DISC_MORT_RATIO*OBS_DISCARD
, is.na(LINK1) ~ DISC_MORT_RATIO*COAL_RATE*LIVE_POUNDS)
)
joined_table %>%
group_by(SPECIES_STOCK, DISCARD_SOURCE) %>%
dplyr::summarise(DISCARD_EST = sum(DISCARD)) %>%
pivot_wider(names_from = 'SPECIES_STOCK', values_from = 'DISCARD_EST') %>%
dplyr::select(-1) %>%
colSums(na.rm = T) %>%
round()
#-------------------------------#
# substitute EM data on EM trips
#-------------------------------#
print(paste0('Adding EM values for ', species$COMNAME[i], ' Groundfish Trips ', FY))
em_tab = ROracle::dbGetQuery(conn = con_maps, statement = "
select SPECIES_ITIS as SPECIES_ITIS_EVAL
, EM_COMPARISON
, VTR_DISCARD
, EM_DISCARD
, DELTA_DISCARD
, NMFS_DISCARD
, NMFS_DISCARD_SOURCE
, SERIAL_NUM as VTRSERNO
from GF_EM_DELTA_VTR_DISCARD
") %>%
as_tibble()
emjoin = joined_table %>%
left_join(., em_tab, by = c('VTRSERNO', 'SPECIES_ITIS_EVAL')) %>%
mutate(DISCARD = case_when(is.na(NMFS_DISCARD_SOURCE) ~ DISCARD
, DISCARD_SOURCE == 'O' ~ DISCARD
, !is.na(NMFS_DISCARD_SOURCE) & DISCARD_SOURCE != 'O' ~ NMFS_DISCARD*DISC_MORT_RATIO)
) %>%
mutate(DISCARD_SOURCE = case_when(is.na(NMFS_DISCARD_SOURCE) ~ DISCARD_SOURCE
, DISCARD_SOURCE == 'O' ~ DISCARD_SOURCE
, !is.na(NMFS_DISCARD_SOURCE) & DISCARD_SOURCE != 'O' ~ NMFS_DISCARD_SOURCE)
) %>%
dplyr::select(names(joined_table))
# emjoin %>% group_by(DISCARD_SOURCE, NMFS_DISCARD_SOURCE) %>% dplyr::summarise(sum(DISCARD_MOD, na.rm = T))
#-------------------------------#
# save trip by trip info to .fst file
#-------------------------------#
# saveRDS(joined_table, file = paste0('/home/bgaluardi/PROJECTS/discaRd/CAMS/MODULES/GROUNDFISH/OUTPUT/discard_est_', species_itis, '_gftrips_only.RDS')
fst::write_fst(x = emjoin, path = paste0('/home/bgaluardi/PROJECTS/discaRd/CAMS/MODULES/GROUNDFISH/OUTPUT/discard_est_', species_itis, '_gftrips_only', FY,'.fst'))
t2 = Sys.time()
print(paste('RUNTIME: ', round(difftime(t2, t1, units = "mins"),2), ' MINUTES', sep = ''))
}
stratvars_nongf = c('SPECIES_STOCK'
,'CAMS_GEAR_GROUP'
, 'MESHGROUP'
, 'TRIPCATEGORY'
, 'ACCESSAREA')
for(i in 1:length(species$SPECIES_ITIS)){
t1 = Sys.time()
print(paste0('Running non-groundfish trips for ', species$COMNAME[i], ' Fishing Year ', FY))
# species_nespp3 = species$NESPP3[i]
species_itis = species$SPECIES_ITIS[i]
#---#
# Support table import by species
# GEAR TABLE
CAMS_GEAR_STRATA = tbl(con_maps, sql(' select * from MAPS.CAMS_GEARCODE_STRATA')) %>%
collect() %>%
dplyr::rename(GEARCODE = VTR_GEAR_CODE) %>%
# filter(NESPP3 == species_nespp3) %>%
filter(SPECIES_ITIS == species_itis) %>%
dplyr::select(-NESPP3, -SPECIES_ITIS)
# Stat areas table
# unique stat areas for stock ID if needed
STOCK_AREAS = tbl(con_maps, sql('select * from MAPS.CAMS_STATAREA_STOCK')) %>%
# filter(NESPP3 == species_nespp3) %>% # removed & AREA_NAME == species_stock
filter(SPECIES_ITIS == species_itis) %>%
collect() %>%
group_by(AREA_NAME, SPECIES_ITIS) %>%
distinct(STAT_AREA) %>%
mutate(AREA = as.character(STAT_AREA)
, SPECIES_STOCK = AREA_NAME) %>%
ungroup()
# %>%
# dplyr::select(SPECIES_STOCK, AREA)
# Mortality table
CAMS_DISCARD_MORTALITY_STOCK = tbl(con_maps, sql("select * from MAPS.CAMS_DISCARD_MORTALITY_STOCK")) %>%
collect() %>%
mutate(SPECIES_STOCK = AREA_NAME
, GEARCODE = CAMS_GEAR_GROUP
, CAMS_GEAR_GROUP = as.character(CAMS_GEAR_GROUP)) %>%
select(-AREA_NAME) %>%
# mutate(CAREA = as.character(STAT_AREA)) %>%
# filter(NESPP3 == species_nespp3) %>%
filter(SPECIES_ITIS == species_itis) %>%
dplyr::select(-SPECIES_ITIS)
# %>%
# dplyr::rename(DISC_MORT_RATIO = Discard_Mortality_Ratio)
#---------#
# haddock example trips with full strata either in year_t or year _t-1
#---------#
# print(paste0("Getting in-season rates for ", species_itis, " ", FY))
# make tables
ddat_focal <- non_gf_dat %>%
filter(GF_YEAR == FY) %>% ## time element is here!!
filter(AREA %in% STOCK_AREAS$AREA) %>%
mutate(LIVE_POUNDS = SUBTRIP_KALL
,SEADAYS = 0
) %>%
left_join(., y = STOCK_AREAS, by = 'AREA') %>%
left_join(., y = CAMS_GEAR_STRATA, by = 'GEARCODE') %>%
left_join(., y = CAMS_DISCARD_MORTALITY_STOCK
, by = c('SPECIES_STOCK', 'CAMS_GEAR_GROUP')
) %>%
dplyr::select(-SPECIES_ITIS.y, -GEARCODE.y, -COMMON_NAME.y, -NESPP3.y) %>%
dplyr::rename(SPECIES_ITIS = 'SPECIES_ITIS.x', GEARCODE = 'GEARCODE.x',COMMON_NAME = COMMON_NAME.x, NESPP3 = NESPP3.x) %>%
relocate('COMMON_NAME','SPECIES_ITIS','NESPP3','SPECIES_STOCK','CAMS_GEAR_GROUP','DISC_MORT_RATIO')
ddat_prev <- non_gf_dat %>%
filter(GF_YEAR == FY-1) %>% ## time element is here!!
filter(AREA %in% STOCK_AREAS$AREA) %>%
mutate(LIVE_POUNDS = SUBTRIP_KALL
,SEADAYS = 0
) %>%
left_join(., y = STOCK_AREAS, by = 'AREA') %>%
left_join(., y = CAMS_GEAR_STRATA, by = 'GEARCODE') %>%
left_join(., y = CAMS_DISCARD_MORTALITY_STOCK
, by = c('SPECIES_STOCK', 'CAMS_GEAR_GROUP')
) %>%
dplyr::select(-SPECIES_ITIS.y, -GEARCODE.y, -COMMON_NAME.y, -NESPP3.y) %>%
dplyr::rename(SPECIES_ITIS = 'SPECIES_ITIS.x', GEARCODE = 'GEARCODE.x',COMMON_NAME = COMMON_NAME.x, NESPP3 = NESPP3.x) %>%
relocate('COMMON_NAME','SPECIES_ITIS','NESPP3','SPECIES_STOCK','CAMS_GEAR_GROUP','DISC_MORT_RATIO')
# need to slice the first record for each observed trip.. these trips are multi rowed while unobs trips are single row..
# need to select only discards for species evaluated. All OBS trips where nothing of that species was disacrded Must be zero!
ddat_focal_non_gf = ddat_focal %>%
filter(!is.na(LINK1)) %>%
mutate(SPECIES_EVAL_DISCARD = case_when(SPECIES_ITIS == species_itis ~ DISCARD
)) %>%
mutate(SPECIES_EVAL_DISCARD = coalesce(SPECIES_EVAL_DISCARD, 0)) %>%
group_by(LINK1, CAMS_SUBTRIP) %>%
arrange(desc(SPECIES_EVAL_DISCARD)) %>%
slice(1) %>%
ungroup()
# and join to the unobserved trips
ddat_focal_non_gf = ddat_focal_non_gf %>%
union_all(ddat_focal %>%
filter(is.na(LINK1))
# %>%
# group_by(VTRSERNO, CAMSID) %>%
# slice(1) %>%
# ungroup()
)
# if using the combined catch/obs table, which seems necessary for groundfish.. need to roll your own table to use with run_discard function
# DO NOT NEED TO FILTER SPECIES HERE. NEED TO RETAIN ALL TRIPS. THE MAKE_BDAT_FOCAL.R FUNCTION TAKES CARE OF THIS.
bdat_non_gf = ddat_focal %>%
filter(!is.na(LINK1)) %>%
mutate(DISCARD_PRORATE = DISCARD
, OBS_AREA = AREA
, OBS_HAUL_KALL_TRIP = OBS_KALL
, PRORATE = 1)
# set up trips table for previous year
ddat_prev_non_gf = ddat_prev %>%
filter(!is.na(LINK1)) %>%
mutate(SPECIES_EVAL_DISCARD = case_when(SPECIES_ITIS == species_itis ~ DISCARD
)) %>%
mutate(SPECIES_EVAL_DISCARD = coalesce(SPECIES_EVAL_DISCARD, 0)) %>%
group_by(LINK1, CAMS_SUBTRIP) %>%
arrange(desc(SPECIES_EVAL_DISCARD)) %>%
slice(1) %>%
ungroup()
ddat_prev_non_gf = ddat_prev_non_gf %>%
union_all(ddat_prev %>%
filter(is.na(LINK1))
# %>%
# group_by(VTRSERNO, CAMSID) %>%
# slice(1) %>%
# ungroup()
)
# previous year observer data needed..
bdat_prev_non_gf = ddat_prev %>%
filter(!is.na(LINK1)) %>%
mutate(DISCARD_PRORATE = DISCARD
, OBS_AREA = AREA
, OBS_HAUL_KALL_TRIP = OBS_KALL
, PRORATE = 1)
# Run the discaRd functions on previous year
d_prev = run_discard(bdat = bdat_prev_non_gf
, ddat = ddat_prev_non_gf
, c_o_tab = ddat_prev
, species_itis = species_itis
, stratvars = stratvars_nongf
# , aidx = c(1:length(stratvars))
, aidx = c(1:2) # uses GEAR as assumed
)
# Run the discaRd functions on current year
d_focal = run_discard(bdat = bdat_non_gf
, ddat = ddat_focal_non_gf
, c_o_tab = ddat_focal
, species_itis = species_itis
, stratvars = stratvars_nongf
# , aidx = c(1:length(stratvars)) # this makes sure this isn't used..
, aidx = c(1:2) # uses GEAR as assumed
)
# summarize each result for convenience
dest_strata_p = d_prev$allest$C %>% summarise(STRATA = STRATA
, N = N
, n = n
, orate = round(n/N, 2)
, drate = RE_mean
, KALL = K, disc_est = round(D)
, CV = round(RE_rse, 2)
)
dest_strata_f = d_focal$allest$C %>% summarise(STRATA = STRATA
, N = N
, n = n
, orate = round(n/N, 2)
, drate = RE_mean
, KALL = K, disc_est = round(D)
, CV = round(RE_rse, 2)
)
# substitute transition rates where needed
trans_rate_df = dest_strata_f %>%
left_join(., dest_strata_p, by = 'STRATA') %>%
mutate(STRATA = STRATA
, n_obs_trips_f = n.x
, n_obs_trips_p = n.y
, in_season_rate = drate.x
, previous_season_rate = drate.y
) %>%
mutate(n_obs_trips_p = coalesce(n_obs_trips_p, 0)) %>%
mutate(trans_rate = get.trans.rate(l_observed_trips = n_obs_trips_f
, l_assumed_rate = previous_season_rate
, l_inseason_rate = in_season_rate
)
) %>%
dplyr::select(STRATA
, n_obs_trips_f
, n_obs_trips_p
, in_season_rate
, previous_season_rate
, trans_rate
, CV_f = CV.x
)
trans_rate_df = trans_rate_df %>%
mutate(final_rate = case_when((in_season_rate != trans_rate & !is.na(trans_rate)) ~ trans_rate))
trans_rate_df$final_rate = coalesce(trans_rate_df$final_rate, trans_rate_df$in_season_rate)
trans_rate_df_full = trans_rate_df
full_strata_table = trans_rate_df_full %>%
right_join(., y = d_focal$res, by = 'STRATA') %>%
as_tibble() %>%
mutate(SPECIES_ITIS_EVAL = species_itis
, COMNAME_EVAL = species$COMNAME[i]
, FISHING_YEAR = FY
, FY_TYPE = FY_TYPE) %>%
dplyr::rename(FULL_STRATA = STRATA)
# GEAR AND MESHGROUP STRATA (2nd pass)
# print(paste0("Getting rates across sectors for ", species_itis, " ", FY))
stratvars_assumed = c("SPECIES_STOCK"
, "CAMS_GEAR_GROUP"
, "MESHGROUP")
### All tables in previous run can be re-used wiht diff stratification
# Run the discaRd functions on previous year
d_prev_pass2 = run_discard(bdat = bdat_prev_non_gf
, ddat = ddat_prev_non_gf
, c_o_tab = ddat_prev
# , year = 2018
# , species_nespp3 = species_nespp3
, species_itis = species_itis
, stratvars = stratvars_assumed
# , aidx = c(1:length(stratvars_assumed)) # this makes sure this isn't used..
, aidx = c(1) # this creates an unstratified broad stock rate
)
# Run the discaRd functions on current year
d_focal_pass2 = run_discard(bdat = bdat_non_gf
, ddat = ddat_focal_non_gf
, c_o_tab = ddat_focal
# , year = 2019
# , species_nespp3 = '081' # haddock...
# , species_nespp3 = species_nespp3 #'081' #cod...
, species_itis = species_itis
, stratvars = stratvars_assumed
# , aidx = c(1:length(stratvars_assumed)) # this makes sure this isn't used..
, aidx = c(1) # this creates an unstratified broad stock rate
)
# summarize each result for convenience
dest_strata_p_pass2 = d_prev_pass2$allest$C %>% summarise(STRATA = STRATA
, N = N
, n = n
, orate = round(n/N, 2)
, drate = RE_mean
, KALL = K, disc_est = round(D)
, CV = round(RE_rse, 2)
)
dest_strata_f_pass2 = d_focal_pass2$allest$C %>% summarise(STRATA = STRATA
, N = N
, n = n
, orate = round(n/N, 2)
, drate = RE_mean
, KALL = K, disc_est = round(D)
, CV = round(RE_rse, 2)
)
# substitute transition rates where needed
trans_rate_df_pass2 = dest_strata_f_pass2 %>%
left_join(., dest_strata_p_pass2, by = 'STRATA') %>%
mutate(STRATA = STRATA
, n_obs_trips_f = n.x
, n_obs_trips_p = n.y
, in_season_rate = drate.x
, previous_season_rate = drate.y
) %>%
mutate(n_obs_trips_p = coalesce(n_obs_trips_p, 0)) %>%
mutate(trans_rate = get.trans.rate(l_observed_trips = n_obs_trips_f
, l_assumed_rate = previous_season_rate
, l_inseason_rate = in_season_rate
)
) %>%
dplyr::select(STRATA
, n_obs_trips_f
, n_obs_trips_p
, in_season_rate
, previous_season_rate
, trans_rate
, CV_f = CV.x
)
trans_rate_df_pass2 = trans_rate_df_pass2 %>%
mutate(final_rate = case_when((in_season_rate != trans_rate & !is.na(trans_rate)) ~ trans_rate))
trans_rate_df_pass2$final_rate = coalesce(trans_rate_df_pass2$final_rate, trans_rate_df_pass2$in_season_rate)
# get a table of broad stock rates using discaRd functions. Previosuly we used sector rollupresults (ARATE in pass2)
bdat_2yrs = bind_rows(bdat_prev_non_gf, bdat_non_gf)
ddat_non_gf_2yr = bind_rows(ddat_prev_non_gf, ddat_focal_non_gf)
ddat_2yr = bind_rows(ddat_prev, ddat_focal)
mnk = run_discard( bdat = bdat_2yrs
, ddat_focal = ddat_non_gf_2yr
, c_o_tab = ddat_2yr
, species_itis = species_itis
, stratvars = stratvars[1:2] #"SPECIES_STOCK" "CAMS_GEAR_GROUP"
)
# rate table
mnk$allest$C
SPECIES_STOCK <-sub("_.*", "", mnk$allest$C$STRATA)
CAMS_GEAR_GROUP <- sub(".*?_", "", mnk$allest$C$STRATA)
BROAD_STOCK_RATE <- mnk$allest$C$RE_mean
CV_b <- round(mnk$allest$C$RE_rse, 2)
BROAD_STOCK_RATE_TABLE <- as.data.frame(cbind(SPECIES_STOCK, CAMS_GEAR_GROUP, BROAD_STOCK_RATE, CV_b))
BROAD_STOCK_RATE_TABLE$BROAD_STOCK_RATE <- as.numeric(BROAD_STOCK_RATE_TABLE$BROAD_STOCK_RATE)
BROAD_STOCK_RATE_TABLE$CV_b <- as.numeric(BROAD_STOCK_RATE_TABLE$CV_b)
names(trans_rate_df_pass2) = paste0(names(trans_rate_df_pass2), '_a')
#
# join full and assumed strata tables
#
# print(paste0("Constructing output table for ", species_itis, " ", FY))
joined_table = assign_strata(full_strata_table, stratvars_assumed) %>%
dplyr::select(-STRATA_ASSUMED) %>% # not using this anymore here..
dplyr::rename(STRATA_ASSUMED = STRATA) %>%
left_join(., y = trans_rate_df_pass2, by = c('STRATA_ASSUMED' = 'STRATA_a')) %>%
left_join(., y = BROAD_STOCK_RATE_TABLE, by = c('SPECIES_STOCK','CAMS_GEAR_GROUP')) %>%
mutate(COAL_RATE = case_when(n_obs_trips_f >= 5 ~ final_rate # this is an in season rate
, n_obs_trips_f < 5 &
n_obs_trips_p >=5 ~ final_rate # this is a final IN SEASON rate taking transition into account
, n_obs_trips_f < 5 &
n_obs_trips_p < 5 ~ trans_rate_a # this is an final assumed rate taking trasnition into account
)
) %>%
mutate(COAL_RATE = coalesce(COAL_RATE, BROAD_STOCK_RATE)) %>%
mutate(SPECIES_ITIS_EVAL = species_itis
, COMNAME_EVAL = species$COMNAME[i]
, FISHING_YEAR = FY
, FY_TYPE = FY_TYPE)
#
# add discard source
#
# >5 trips in season gets in season rate
# < 5 i nseason but >=5 past year gets transition
# < 5 and < 5 in season, but >= 5 sector rolled up rate (in season) gets get sector rolled up rate
# <5, <5, and <5 gets broad stock rate
joined_table = joined_table %>%
mutate(DISCARD_SOURCE = case_when(!is.na(LINK1) ~ 'O'
, is.na(LINK1) &
n_obs_trips_f >= 5 ~ 'I'
# , is.na(LINK1) & COAL_RATE == previous_season_rate ~ 'P'
, is.na(LINK1) &
n_obs_trips_f < 5 &
n_obs_trips_p >=5 ~ 'T' # this only applies to in-season full strata
, is.na(LINK1) &
n_obs_trips_f < 5 &
n_obs_trips_p < 5 &
n_obs_trips_f_a >= 5 ~ 'GM' # Gear and Mesh, replaces assumed for non-GF
, is.na(LINK1) &
n_obs_trips_f < 5 &
n_obs_trips_p < 5 &
n_obs_trips_p_a >= 5 ~ 'G' # Gear only, replaces broad stock for non-GF
, is.na(LINK1) &
n_obs_trips_f < 5 &
n_obs_trips_p < 5 &
n_obs_trips_f_a < 5 &
n_obs_trips_p_a < 5 ~ 'G')) # Gear only, replaces broad stock for non-GF
#
# make sure CV type matches DISCARD SOURCE}
#
# obs trips get 0, broad stock rate is NA
joined_table = joined_table %>%
mutate(CV = case_when(DISCARD_SOURCE == 'O' ~ 0
, DISCARD_SOURCE == 'I' ~ CV_f
, DISCARD_SOURCE == 'T' ~ CV_f
, DISCARD_SOURCE == 'GM' ~ CV_f_a
, DISCARD_SOURCE == 'G' ~ CV_b
# , DISCARD_SOURCE == 'NA' ~ 'NA'
) # , DISCARD_SOURCE == 'B' ~ NA
)
# Make note of the stratification variables used according to discard source
stratvars_gear = c("SPECIES_STOCK"
, "CAMS_GEAR_GROUP")
strata_f = paste(stratvars, collapse = ';')
strata_a = paste(stratvars_assumed, collapse = ';')
strata_b = paste(stratvars_gear, collapse = ';')
joined_table = joined_table %>%
mutate(STRATA_USED = case_when(DISCARD_SOURCE == 'O' ~ ''
, DISCARD_SOURCE == 'I' ~ strata_f
, DISCARD_SOURCE == 'T' ~ strata_f
, DISCARD_SOURCE == 'GM' ~ strata_a
, DISCARD_SOURCE == 'G' ~ strata_b
)
)
#
# get the discard for each trip using COAL_RATE}
#
# discard mort ratio tht are NA for odd gear types (e.g. cams gear 0) get a 1 mort ratio.
# the KALLs should be small..
joined_table = joined_table %>%
mutate(DISC_MORT_RATIO = coalesce(DISC_MORT_RATIO, 1)) %>%
mutate(DISCARD = case_when(!is.na(LINK1) ~ DISC_MORT_RATIO*OBS_DISCARD
, is.na(LINK1) ~ DISC_MORT_RATIO*COAL_RATE*LIVE_POUNDS)
)
# saveRDS(joined_table, file = paste0('~/PROJECTS/discaRd/CAMS/MODULES/GROUNDFISH/OUTPUT/discard_est_', species_itis, '_non_gftrips.RDS'))
fst::write_fst(x = joined_table, path = paste0('~/PROJECTS/discaRd/CAMS/MODULES/GROUNDFISH/OUTPUT/discard_est_', species_itis, '_non_gftrips', FY,'.fst'))
t2 = Sys.time()
print(paste('RUNTIME: ', round(difftime(t2, t1, units = "mins"),2), ' MINUTES', sep = ''))
}
# do only the yellowtail and windowpane for scallop trips
scal_gf_species = species %>%
filter(SPECIES_ITIS %in% c('172909', '172746'))
# for(species_itis %in% c('172909', '172746')){
for(i in 1:length(scal_gf_species$SPECIES_ITIS)){
species_itis = scal_gf_species$SPECIES_ITIS[i]
source('scallop_subroutine.r')
}
# if(species_itis %in% c('172909', '172746')){
for(i in 1:length(scal_gf_species$SPECIES_ITIS)){
# for(j in 2018:2019){
start_time = Sys.time()
GF_YEAR = FY
# for(i in 1:length(scal_gf_species$SPECIES_ITIS)){
print(paste0('Adding scallop trip estimates of: ', scal_gf_species$COMNAME[i], ' for Groundfish Year ', GF_YEAR))
sp_itis = scal_gf_species$SPECIES_ITIS[i]
# get only the non-gf trips for each species and fishing year
gf_file_dir = '~/PROJECTS/discaRd/CAMS/MODULES/GROUNDFISH/OUTPUT/'
gf_files = list.files(gf_file_dir, pattern = paste0('discard_est_', sp_itis), full.names = T)
gf_files = gf_files[grep(GF_YEAR, gf_files)]
gf_files = gf_files[grep('non_gf', gf_files)]
# get list all scallop trips bridging fishing years
scal_file_dir = '~/PROJECTS/discaRd/CAMS/MODULES/APRIL/OUTPUT/'
scal_files = list.files(scal_file_dir, pattern = paste0('discard_est_', sp_itis), full.names = T)
# read in files
res_scal = lapply(as.list(scal_files), function(x) fst::read_fst(x))
res_gf = lapply(as.list(gf_files), function(x) fst::read_fst(x))
# assign(paste0('outlist_df_scal'), do.call(rbind, outlist))
assign(paste0('outlist_df_scal'), do.call(rbind, res_scal))
# assign(paste0('outlist_df_',sp_itis,'_',GF_YEAR), do.call(rbind, outlist))
assign(paste0('outlist_df_',sp_itis,'_',GF_YEAR), do.call(rbind, res_gf))
t1 = get(paste0('outlist_df_',sp_itis,'_',GF_YEAR)) %>%
dplyr::select(-DATE_TRIP.1)
t2 = get(paste0('outlist_df_scal')) %>%
filter(GF_YEAR == GF_YEAR)
# index scallop records present in groundfish year table
t2idx = t2$CAMS_SUBTRIP %in% t1$CAMS_SUBTRIP # & t2$CAMSID %in% t1$CAMSID
# index records in groundfish table to be removed
t1idx = t1$CAMS_SUBTRIP %in% t2$CAMS_SUBTRIP # & t1$CAMSID %in% t2$CAMSID
# make sure columns match
didx = match(names(t1), names(t2))
# swap the scallop estimated trips into the groundfish records
t1[t1idx, ] = t2[t2idx, didx]
# test against the scallop fy 19
# t2 %>%
# filter(YEAR == 2019 & MONTH >= 4) %>%
# bind_rows(t2 %>%
# filter(YEAR == 2020 & MONTH < 4)) %>%
# group_by(SPECIES_STOCK, ACCESSAREA, FED_OR_STATE) %>%
# dplyr::summarise(round(sum(DISCARD, na.rm = T))) %>%
# write.csv(paste0('~/PROJECTS/discaRd/CAMS/MODULES/APRIL/OUTPUT/', sp_itis,'_for_SCAL_YEAR_2019.csv'), row.names = F)
write_fst(x = t1, path = gf_files)
end_time = Sys.time()
print(paste('Scallop subsitution took: ', round(difftime(end_time, start_time, units = "mins"),2), ' MINUTES', sep = ''))
# look at the GF table with scallop trips swapped in. tHIS WILL BE LOWER SINCE THE FISHIGN YEARS BEGIN AT DIFFERNT MONTHS
# t1 %>%
# filter(YEAR == 2019 & MONTH >= 5) %>%
# bind_rows(t1 %>%
# filter(YEAR == 2020 & MONTH < 4)) %>%
# filter(substr(ACTIVITY_CODE, 1,3) == 'SES') %>%
# group_by(SPECIES_STOCK, ACCESSAREA, SPECIES_ITIS, FED_OR_STATE) %>%
# dplyr::summarise(round(sum(DISCARD, na.rm = T)))
# write.csv(paste0('~/PROJECTS/discaRd/CAMS/MODULES/APRIL/OUTPUT/', sp_itis,'_for_SCAL_YEAR_2019.csv'), row.names = F)
}
# }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.