CAMS/MODULES/MAY/OLD_FILES/may_loop_062122.R

knitr::opts_chunk$set(echo=FALSE, warning = FALSE, 
											message = FALSE, cache = FALSE,
											progress = TRUE, verbose = FALSE, comment = F
											, error = FALSE, dev = 'png', dpi = 200)








# Stratification variables

stratvars = c('SPECIES_STOCK'
              ,'CAMS_GEAR_GROUP'
							, 'MESHGROUP'
						  , 'TRIPCATEGORY'
						  , 'ACCESSAREA')


# Begin loop


for(i in 1:length(species$SPECIES_ITIS)){

t1 = Sys.time()	

print(paste0('Running ', species$COMMON_NAME[i],' Fishing Year ', FY))	

species_itis <- as.character(species$ITIS_TSN[i])
species_itis_srce = as.character(as.numeric(species$ITIS_TSN[i]))
#--------------------------------------------------------------------------#
# Support table import by species

# GEAR TABLE
CAMS_GEAR_STRATA = tbl(con_maps, sql('  select * from MAPS.CAMS_GEARCODE_STRATA')) %>% 
    collect() %>% 
  dplyr::rename(GEARCODE = VTR_GEAR_CODE) %>% 
	filter(SPECIES_ITIS == species_itis) %>%
  dplyr::select(-NESPP3, -SPECIES_ITIS)

# Stat areas table  
# unique stat areas for stock ID if needed
STOCK_AREAS = tbl(con_maps, sql('select * from MAPS.CAMS_STATAREA_STOCK')) %>%
  # filter(NESPP3 == species_nespp3) %>%  # removed  & AREA_NAME == species_stock
	dplyr::filter(SPECIES_ITIS == species_itis) %>%
    collect() %>% 
  group_by(AREA_NAME) %>% 
  distinct(STAT_AREA) %>%
  mutate(AREA = as.character(STAT_AREA)
         , SPECIES_STOCK = AREA_NAME) %>% 
  ungroup() #%>% 
  #dplyr::select(SPECIES_STOCK, AREA)

# Mortality table
CAMS_DISCARD_MORTALITY_STOCK = tbl(con_maps, sql("select * from MAPS.CAMS_DISCARD_MORTALITY_STOCK"))  %>%
  collect() %>%
  mutate(SPECIES_STOCK = AREA_NAME
         , GEARCODE = CAMS_GEAR_GROUP) %>%
  select(-AREA_NAME) %>%
   mutate(CAMS_GEAR_GROUP = as.character(CAMS_GEAR_GROUP)) %>% 
  # filter(NESPP3 == species_nespp3) %>% 
	filter(SPECIES_ITIS == species_itis_srce)
 # dplyr::select(-NESPP3, -SPECIES_ITIS) %>% 
 # dplyr::rename(DISC_MORT_RATIO = Discard_Mortality_Ratio)

#--------------------------------------------------------------------------------#
# make tables
ddat_focal <- all_dat %>% 
  filter(GF_YEAR == FY) %>%   ## time element is here!!
  filter(AREA %in% STOCK_AREAS$AREA) %>% 
  mutate(LIVE_POUNDS = SUBTRIP_KALL
         ,SEADAYS = 0
  			 ) %>% 
   left_join(., y = STOCK_AREAS, by = 'AREA') %>% 
   left_join(., y = CAMS_GEAR_STRATA, by = 'GEARCODE') %>% 
   left_join(., y = CAMS_DISCARD_MORTALITY_STOCK
            , by = c('SPECIES_STOCK', 'CAMS_GEAR_GROUP')
            ) %>% 
	dplyr::select(-SPECIES_ITIS.y, -GEARCODE.y) %>% 
		dplyr::rename(COMMON_NAME= 'COMMON_NAME.x',SPECIES_ITIS = 'SPECIES_ITIS.x',
	              GEARCODE = 'GEARCODE.x') %>% 
  relocate('COMMON_NAME','SPECIES_ITIS'
  				 ,'SPECIES_STOCK','CAMS_GEAR_GROUP','DISC_MORT_RATIO')


ddat_prev <- all_dat %>% 
  filter(GF_YEAR == FY-1) %>%   ## time element is here!!
  filter(AREA %in% STOCK_AREAS$AREA) %>% 
  mutate(LIVE_POUNDS = SUBTRIP_KALL
         ,SEADAYS = 0
  			 ) %>% 
   left_join(., y = STOCK_AREAS, by = 'AREA') %>% 
   left_join(., y = CAMS_GEAR_STRATA, by = 'GEARCODE') %>% 
   left_join(., y = CAMS_DISCARD_MORTALITY_STOCK
            , by = c('SPECIES_STOCK', 'CAMS_GEAR_GROUP')
            ) %>% 
	dplyr::select(-SPECIES_ITIS.y, -GEARCODE.y) %>% 
	dplyr::rename(COMMON_NAME= 'COMMON_NAME.x',SPECIES_ITIS = 'SPECIES_ITIS.x',
	              GEARCODE = 'GEARCODE.x') %>% 
  relocate('COMMON_NAME','SPECIES_ITIS'
  				 ,'SPECIES_STOCK','CAMS_GEAR_GROUP','DISC_MORT_RATIO')



# need to slice the first record for each observed trip.. these trips are multi rowed while unobs trips are single row.. 
ddat_focal_cy = ddat_focal %>% 
  filter(!is.na(LINK1)) %>% 
	mutate(SPECIES_EVAL_DISCARD = case_when(SPECIES_ITIS == species_itis ~ DISCARD
																					)) %>% 
	mutate(SPECIES_EVAL_DISCARD = coalesce(SPECIES_EVAL_DISCARD, 0)) %>% 
  group_by(LINK1, VTRSERNO) %>% 
	arrange(desc(SPECIES_EVAL_DISCARD)) %>% 
	slice(1) %>% 
  ungroup()

# and join to the unobserved trips

ddat_focal_cy = ddat_focal_cy %>% 
  union_all(ddat_focal %>% 
              filter(is.na(LINK1)))  
            #    group_by(VTRSERNO, CAMSID) %>% 
            #    slice(1) %>% 
            #    ungroup()
            # )


# if using the combined catch/obs table, which seems necessary for groundfish.. need to roll your own table to use with run_discard function
# DO NOT NEED TO FILTER SPECIES HERE. NEED TO RETAIN ALL TRIPS. THE MAKE_BDAT_FOCAL.R FUNCTION TAKES CARE OF THIS. 

bdat_cy = ddat_focal %>% 
  filter(!is.na(LINK1)) %>% 
  mutate(DISCARD_PRORATE = DISCARD
         , OBS_AREA = AREA
         , OBS_HAUL_KALL_TRIP = OBS_KALL
         , PRORATE = 1)


# set up trips table for previous year
ddat_prev_cy = ddat_prev %>% 
  filter(!is.na(LINK1)) %>% 
	mutate(SPECIES_EVAL_DISCARD = case_when(SPECIES_ITIS == species_itis ~ DISCARD
																					)) %>% 
	mutate(SPECIES_EVAL_DISCARD = coalesce(SPECIES_EVAL_DISCARD, 0)) %>% 
  group_by(LINK1, VTRSERNO) %>% 
	arrange(desc(SPECIES_EVAL_DISCARD)) %>% 
	slice(1) %>% 
  ungroup()

ddat_prev_cy = ddat_prev_cy %>% 
  union_all(ddat_prev %>% 
  						 filter(is.na(LINK1))) #%>% 
               # group_by(VTRSERNO,CAMSID) %>% 
               # slice(1) %>% 
               # ungroup()
  				


# previous year observer data needed.. 
bdat_prev_cy = ddat_prev %>% 
  filter(!is.na(LINK1)) %>% 
  mutate(DISCARD_PRORATE = DISCARD
         , OBS_AREA = AREA
         , OBS_HAUL_KALL_TRIP = OBS_KALL
         , PRORATE = 1)

# Run the discaRd functions on previous year
d_prev = run_discard(bdat = bdat_prev_cy
											 , ddat = ddat_prev_cy
											 , c_o_tab = ddat_prev
											 # , year = 2018
											 # , species_nespp3 = species_nespp3
										   , species_itis = species_itis
											 , stratvars = stratvars
											 , aidx = c(1:length(stratvars))
											 )

# Run the discaRd functions on current year
d_focal = run_discard(bdat = bdat_cy
											 , ddat = ddat_focal_cy
											 , c_o_tab = ddat_focal
											 # , year = 2019
											 # , species_nespp3 = '081' # haddock...
											 # , species_nespp3 = species_nespp3  #'081' #cod...
											 , species_itis = species_itis
											 , stratvars = stratvars
											 , aidx = c(1:length(stratvars))  # this makes sure this isn't used.. 
											 )

# summarize each result for convenience
dest_strata_p = d_prev$allest$C %>% summarise(STRATA = STRATA
                       , N = N
                       , n = n
                       , orate = round(n/N, 2)
                       , drate = RE_mean
                       , KALL = K, disc_est = round(D)
                       , CV = round(RE_rse, 2)
										)

dest_strata_f = d_focal$allest$C %>% summarise(STRATA = STRATA
                       , N = N
                       , n = n
                       , orate = round(n/N, 2)
                       , drate = RE_mean
                       , KALL = K, disc_est = round(D)
                       , CV = round(RE_rse, 2)
										)

# substitute transition rates where needed

trans_rate_df = dest_strata_f %>% 
  left_join(., dest_strata_p, by = 'STRATA') %>% 
  mutate(STRATA = STRATA
         , n_obs_trips_f = n.x
  			 , n_obs_trips_p = n.y
         , in_season_rate = drate.x
         , previous_season_rate = drate.y
  ) %>% 
	mutate(n_obs_trips_p = coalesce(n_obs_trips_p, 0)) %>% 
  mutate(trans_rate = get.trans.rate(l_observed_trips = n_obs_trips_f
                                         , l_assumed_rate = previous_season_rate
                                         , l_inseason_rate = in_season_rate
                                         )
         ) %>% 
  dplyr::select(STRATA
         , n_obs_trips_f
         , n_obs_trips_p
         , in_season_rate 
         , previous_season_rate 
         , trans_rate
         , CV_f = CV.x
         )


trans_rate_df = trans_rate_df %>% 
  mutate(final_rate = case_when((in_season_rate != trans_rate & !is.na(trans_rate)) ~ trans_rate)) 
  
 trans_rate_df$final_rate = coalesce(trans_rate_df$final_rate, trans_rate_df$in_season_rate)

 
 trans_rate_df_full = trans_rate_df
 
 full_strata_table = trans_rate_df_full %>% 
   right_join(., y = d_focal$res, by = 'STRATA') %>% 
   as_tibble() %>% 
 	 	mutate(SPECIES_ITIS_EVAL = species_itis
 				 , COMNAME_EVAL = species$COMNAME[i]
 				 , FISHING_YEAR = FY
 				 , FY_TYPE = FY_TYPE) %>% 
 	   dplyr::rename(FULL_STRATA = STRATA) 
 
#
# SECTOR ROLLUP
#
# print(paste0("Getting rates across sectors for ", species_itis, " ", FY)) 
 
stratvars_assumed = c("SPECIES_STOCK"
											, "CAMS_GEAR_GROUP"
											, "MESHGROUP")


### All tables in previous run can be re-used wiht diff stratification

# Run the discaRd functions on previous year
d_prev_pass2 = run_discard(bdat = bdat_prev_cy
											 , ddat = ddat_prev_cy
											 , c_o_tab = ddat_prev
											 # , year = 2018
											 # , species_nespp3 = species_nespp3
										   , species_itis = species_itis
											 , stratvars = stratvars_assumed
											 # , aidx = c(1:length(stratvars_assumed))  # this makes sure this isn't used.. 
											, aidx = c(1)  # this creates an unstratified broad stock rate
											 )


# Run the discaRd functions on current year
d_focal_pass2 = run_discard(bdat = bdat_cy
											 , ddat = ddat_focal_cy
											 , c_o_tab = ddat_focal
											 # , year = 2019
											 # , species_nespp3 = '081' # haddock...
											 # , species_nespp3 = species_nespp3  #'081' #cod...
											 , species_itis = species_itis
											 , stratvars = stratvars_assumed
											 # , aidx = c(1:length(stratvars_assumed))  # this makes sure this isn't used.. 
											, aidx = c(1)  # this creates an unstratified broad stock rate
											 )

# summarize each result for convenience
dest_strata_p_pass2 = d_prev_pass2$allest$C %>% summarise(STRATA = STRATA
                       , N = N
                       , n = n
                       , orate = round(n/N, 2)
                       , drate = RE_mean
                       , KALL = K, disc_est = round(D)
                       , CV = round(RE_rse, 2)
										)

dest_strata_f_pass2 = d_focal_pass2$allest$C %>% summarise(STRATA = STRATA
                       , N = N
                       , n = n
                       , orate = round(n/N, 2)
                       , drate = RE_mean
                       , KALL = K, disc_est = round(D)
                       , CV = round(RE_rse, 2)
										)

# substitute transition rates where needed

trans_rate_df_pass2 = dest_strata_f_pass2 %>% 
  left_join(., dest_strata_p_pass2, by = 'STRATA') %>% 
  mutate(STRATA = STRATA
         , n_obs_trips_f = n.x
  			 , n_obs_trips_p = n.y
         , in_season_rate = drate.x
         , previous_season_rate = drate.y
  ) %>% 
	mutate(n_obs_trips_p = coalesce(n_obs_trips_p, 0)) %>% 
  mutate(trans_rate = get.trans.rate(l_observed_trips = n_obs_trips_f
                                         , l_assumed_rate = previous_season_rate
                                         , l_inseason_rate = in_season_rate
                                         )
         ) %>% 
  dplyr::select(STRATA
         , n_obs_trips_f
         , n_obs_trips_p
         , in_season_rate 
         , previous_season_rate 
         , trans_rate
         , CV_f = CV.x
         )


trans_rate_df_pass2 = trans_rate_df_pass2 %>% 
  mutate(final_rate = case_when((in_season_rate != trans_rate & !is.na(trans_rate)) ~ trans_rate)) 
  
 trans_rate_df_pass2$final_rate = coalesce(trans_rate_df_pass2$final_rate, trans_rate_df_pass2$in_season_rate)

 
 # get a table of broad stock rates using discaRd functions. Previosuly we used sector rollupresults (ARATE in pass2)


bdat_2yrs = bind_rows(bdat_prev_cy, bdat_cy)
ddat_cy_2yr = bind_rows(ddat_prev_cy, ddat_focal_cy)
ddat_2yr = bind_rows(ddat_prev, ddat_focal)

mnk = run_discard( bdat = bdat_2yrs
			, ddat_focal = ddat_cy_2yr
			, c_o_tab = ddat_2yr
			, species_itis = species_itis
			, stratvars = stratvars[1:2]  #"SPECIES_STOCK"   "CAMS_GEAR_GROUP"
			)

# rate table
mnk$allest$C

SPECIES_STOCK <-sub("_.*", "", mnk$allest$C$STRATA)  

CAMS_GEAR_GROUP <- sub(".*?_", "", mnk$allest$C$STRATA) 

BROAD_STOCK_RATE <-  mnk$allest$C$RE_mean

CV_b <- round(mnk$allest$C$RE_rse, 2)

BROAD_STOCK_RATE_TABLE <- as.data.frame(cbind(SPECIES_STOCK, CAMS_GEAR_GROUP, BROAD_STOCK_RATE, CV_b))

BROAD_STOCK_RATE_TABLE$BROAD_STOCK_RATE <- as.numeric(BROAD_STOCK_RATE_TABLE$BROAD_STOCK_RATE)
BROAD_STOCK_RATE_TABLE$CV_b <- as.numeric(BROAD_STOCK_RATE_TABLE$CV_b)


names(trans_rate_df_pass2) = paste0(names(trans_rate_df_pass2), '_a')
  
#
# join full and assumed strata tables
#
# print(paste0("Constructing output table for ", species_itis, " ", FY)) 

joined_table = assign_strata(full_strata_table, stratvars_assumed) %>% 
	dplyr::select(-STRATA_ASSUMED) %>%  # not using this anymore here..
	dplyr::rename(STRATA_ASSUMED = STRATA) %>% 
	left_join(., y = trans_rate_df_pass2, by = c('STRATA_ASSUMED' = 'STRATA_a')) %>% 
	left_join(., y = BROAD_STOCK_RATE_TABLE, by = c('SPECIES_STOCK','CAMS_GEAR_GROUP')) %>% 
	mutate(COAL_RATE = case_when(n_obs_trips_f >= 5 ~ final_rate  # this is an in season rate
															 , n_obs_trips_f < 5 & 
															 	n_obs_trips_p >=5 ~ final_rate  # this is a final IN SEASON rate taking transition into account
															 , n_obs_trips_f < 5 & 
															 	n_obs_trips_p < 5 ~ trans_rate_a  # this is an final assumed rate taking trasnition into account
		                           )
	) %>% 
	mutate(COAL_RATE = coalesce(COAL_RATE, BROAD_STOCK_RATE)) %>%
	mutate(SPECIES_ITIS_EVAL = species_itis
 				 , COMNAME_EVAL = species$COMNAME[i]
 				 , FISHING_YEAR = FY
 				 , FY_TYPE = FY_TYPE) 

#
# add discard source
#


# >5 trips in season gets in season rate
# < 5 i nseason but >=5 past year gets transition
# < 5 and < 5 in season, but >= 5 sector rolled up rate (in season) gets get sector rolled up rate
# <5, <5,  and <5 gets broad stock rate

joined_table = joined_table %>% 
    mutate(DISCARD_SOURCE = case_when(!is.na(LINK1) ~ 'O'
    																	, is.na(LINK1) & 
    																		n_obs_trips_f >= 5 ~ 'I'
    																	# , is.na(LINK1) & COAL_RATE == previous_season_rate ~ 'P'
    																	, is.na(LINK1) & 
    																		n_obs_trips_f < 5 & 
    																		n_obs_trips_p >=5 ~ 'T'
    																	, is.na(LINK1) & 
    																		n_obs_trips_f < 5 &
    																		n_obs_trips_p < 5 &
    																		n_obs_trips_f_a >= 5 ~ 'GM'
    																	, is.na(LINK1) & 
    																		n_obs_trips_f < 5 &
    																		n_obs_trips_p < 5 &
    																		n_obs_trips_p_a >= 5 ~ 'G'
    																	, is.na(LINK1) & 
    																		n_obs_trips_f < 5 & 
    																		n_obs_trips_p < 5 & 
    																		n_obs_trips_f_a < 5 & 
    																		n_obs_trips_p_a < 5 ~ 'G'))
    												

#
# make sure CV type matches DISCARD SOURCE}
#

# obs trips get 0, broad stock rate is NA



joined_table = joined_table %>% 
	mutate(CV = case_when(DISCARD_SOURCE == 'O' ~ 0
												, DISCARD_SOURCE == 'I' ~ CV_f
												, DISCARD_SOURCE == 'T' ~ CV_f
												, DISCARD_SOURCE == 'GM' ~ CV_f_a
												, DISCARD_SOURCE == 'G' ~ CV_b
											#	, DISCARD_SOURCE == 'NA' ~ 'NA'
												)  # , DISCARD_SOURCE == 'B' ~ NA
				 )

# Make note of the stratification variables used according to discard source

stratvars_gear = c("SPECIES_STOCK"
											, "CAMS_GEAR_GROUP")

strata_f = paste(stratvars, collapse = ';')
strata_a = paste(stratvars_assumed, collapse = ';')
strata_b = paste(stratvars_gear, collapse = ';')

joined_table = joined_table %>% 
	mutate(STRATA_USED = case_when(DISCARD_SOURCE == 'O' ~ ''
												, DISCARD_SOURCE == 'I' ~ strata_f
												, DISCARD_SOURCE == 'T' ~ strata_f
												, DISCARD_SOURCE == 'GM' ~ strata_a
												, DISCARD_SOURCE == 'G' ~ strata_b
												) 
				 )


#
# get the discard for each trip using COAL_RATE}
#

# discard mort ratio tht are NA for odd gear types (e.g. cams gear 0) get a 1 mort ratio. 
# the KALLs should be small.. 

joined_table = joined_table %>% 
	mutate(DISC_MORT_RATIO = coalesce(DISC_MORT_RATIO, 1)) %>%
	mutate(DISCARD = case_when(!is.na(LINK1) ~ DISC_MORT_RATIO*OBS_DISCARD
														 , is.na(LINK1) ~ DISC_MORT_RATIO*COAL_RATE*LIVE_POUNDS)
				 )

fst::write_fst(x = joined_table, path = paste0('~/PROJECTS/discaRd/CAMS/MODULES/MAY/OUTPUT/discard_est_', species_itis, '_trips', FY,'.fst'))
 
t2 = Sys.time()
	
print(paste('RUNTIME: ', round(difftime(t2, t1, units = "mins"),2), ' MINUTES',  sep = ''))
}
noaa-garfo/discaRd documentation built on April 17, 2025, 10:32 p.m.