| atomdat_1 | Agent predictions for response 1 |
| atomdat_2 | Agent predictions for response 2 |
| atomdat_3 | Agent predictions for response 3 |
| bikes_atom | Atomic predictions for the bikes data |
| bikes_bart | Notebook generator: BART |
| bikes_d | Bikeshare data, daily |
| bikes_d_log | Bikeshare data, daily |
| bikes_linreg | Notebook generator: simple linear regression |
| bikes_regression | Notebook generator: Bayesian regression |
| bikes_svbvar | Notebook generator: Stochastic BVAR |
| bivariate_predabil | Bivariate predictive ability plot using plotly |
| bvar_pd | BVAR-NiW predictive density |
| caliper_relevance | Caliper method for local weights |
| caliper_relevance_dynamic | Dynamic caliper width determination function |
| caliper_relevance_new | Caliper method for local weights, second iteration |
| dmdat | Additional decision maker data. |
| gen_agg_preds | Generate aggregate predictions |
| gen_all_data | Generate all the data needed for the macroeconomics example |
| gen_atomic_df | Generate atomic data frame for predictions |
| gen_atomic_list | Generate list of atomic models |
| gen_atomic_preds | Generate atomic predictions |
| gen_baseline | Generate baseline aggregations |
| gen_gewisano | Generate GewiSano Weights |
| gen_gewisano_local | Generate local GewiSano Weights |
| gen_RAA | Generates local aggregations |
| gen_sotw | Generate state_of_the_world |
| gen_Z | Generate Z matrix |
| local_predictive_ability | Plots local predictive ability |
| macrodata | Medium data set from OG et al 2020, rescaled to unit variance |
| nb_bart | Notebook generator: BART |
| nb_bvar | Notebook generator: BVAR NiW |
| nb_svbvar | Notebook generator: Stochastic BVAR |
| nb_tvpsvbvar | Notebook generator: TVP-SV-BVAR |
| no_in_caliper | Count the number of previous observation in caliper over time |
| omega_minnesota | Omega_0 for the Minnesota prior |
| oscbvar | oscbvar: a packet for a paper |
| plot_no_in_caliper | Plot number of previous observation in caliper over time |
| propto_weighting | Weighting proportional to LPA (local predictive ability) |
| RAL_calculator | Local logscore calculator |
| selbest_weighting | Weighting by picking the best model |
| univariate_predabil | Univariate predictive ability plot |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.