library(parallel)
library(data.table)
library(ggplot2)
################################################################
### Debugging and exploring the stochastic volatility model ###
################################################################
# Does separate runs produce differing predictions?
svtest <- mclapply(
rep(1, 4),
bikes_svbvar,
agc = list(1, 600, FALSE),
mc.cores = 4
)
all_sv <- rbindlist(svtest, idcol = "run")
head(all_sv)
saveRDS(all_sv, "temp-bikes/agents/all_sv.Rds")
# In case something goes horribly wrong
all_sv$run <- as.factor(all_sv$run)
all_sv[all_sv$t == 667, "lpdens"] <- 0
ggplot(all_sv, aes(x = t, y = lpdens, col = run)) +
geom_line() +
labs(title = "Lpdens of multiple runs of stochastic volatility")
ggsave("temp-bikes/agents/compare_sv.pdf")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.