# Table of predictive ability (total) for different aggregation methods
# for all three dependent variables
library(xtable)
library(data_table)
library(devtools)
load_all()
# Run the code in predictions_final three times, one for each response
# then save after the line dff <- rbind (around line 164), with the
# code below
# aggpred_gdp <- dff
# aggpred_gdp$outc <- "gdp"
# aggpred_tcpi <- dff
# aggpred_tcpi$outc <- "tcpi"
#aggpred_fed <- dff
#aggpred_fed$outc <- "fed"
pred_table_data <- rbind(
aggpred_gdp,
aggpred_tcpi,
aggpred_fed
)
pred_table_data <- data.table(pred_table_data)
# Rename the levels
df_alpha <- pred_table_data[
,
.(total_predabil = sum(lpdens)),
.(method, outc)]
df_beta <- dcast(
df_alpha,
method ~ outc,
value.var = "total_predabil"
)
# Better names
df_beta[1, 1] <- "BART"
df_beta[2, 1] <- "BVAR"
df_beta[3, 1] <- "SVBVAR"
df_beta[4, 1] <- "TVPSV"
df_beta[5, 1] <- "Local pool"
df_beta[6, 1] <- "Equal weight"
df_beta[7, 1] <- "Linear pool"
# LaTeX-ready output using xtable
print(
xtable(df_beta),
floating = FALSE,
latex.environments = NULL,
booktabs = TRUE
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.