Transter Data From R To Excel
And Add Special Formating

Peter von Rohr

2016-01-21

Disclaimer

This document describes how a dataframe is transfered into an Excel workbook and how some special
formatting is applied to the newly created spreadsheet all using R-package openxlsx.

Background

It is a fact that most statistics and data analysis is done in MS-Excel. Therefore comes the need to transfer
data from different systems such as R into Excel workbooks.

Preparing steps

The first step before we can start with the data transfer is the installation of the R-package openxlsx. This
installation can be done using the standard installation infrastructure in R.

install.packages(pkgs = "openxlsx")

After installing the package, it is always good to have a look at the documentation. This can be done using
the command

browseVignettes(package = "openxlsx")

The above command will open a browser window showing links to two different documents.

L 8] i)] TERD0A

R Wig vt s AFTLEAADETA it arpiiganna nsnfhnl el tiv sl

Vigncttes found by 'browscVignettes(package — "openxlsx')
Vignettes in package openxlsx

= Tnamples - PIT suurce
Fommuttng Exumzles - BOE source

The first link points to a vignette showing some examples of how data can be transfered from R to Excel. In
what follows, we try to use some of those examples which seam to be relevant for what we try to do.

Examples

The simplest way of writing data from R to Excel is by using the function write.x1sx (). This function
accepts two arguments, the first being the name of a dataframe and the second is the name of the Excel file
which is going to be created. Hence writing Andersens iris data to an Excel workbook can be done as follows

library (openxlsx)
write.xlsx(iris, file = "writeIrisToXLSX1.xlsx")

The next step is to define a style for the column headers. The styles are defined and saved in an object hs.
This object is then passed to function write.xlsx().

hs <- createStyle(fontColour = "#ffffff", fgFill = "red",

halign = "center", valign = "center", textDecoration = "Bold",
border = "TopBottomLeftRight", textRotation = 90)
write.xlsx(iris, file = "writeXLSX4.xlsx", borders = "rows", headerStyle = hs)

From section “1 Formatting with writeData and writeDataTable”

data.frame to write

df <- data.frame("Date" = Sys.Date()-0:4,
"Logical" = c(TRUE, FALSE, TRUE, TRUE, FALSE),
"Currency" = paste("$",-2:2),
"Accounting" = -2:2,
"hLink" = "http://cran.r-project.org/",

"Percentage" = seq(-1, 1, length.out=5),
"TinyNumber" = runif(5) / 1E9, stringsAsFactors = FALSE)
class(df$Currency) <- "currency"
class(df$Accounting) <- "accounting"
class(df$hLink) <- "hyperlink"
class(df$Percentage) <- '"percentage"
class(df$TinyNumber) <- "scientific"
Formatting can be applied simply through the write functions
global options can be set to further simplify things
options("openxlsx.borderStyle" = "thin")
options("openxlsx.borderColour" = "#4F81BD")
create a workbook and add a worksheet
wb <- createWorkbook()
addWorksheet (wb, "writeData auto-formatting")
writeData(wb, 1, df, startRow = 2, startCol = 2)

writeData(wb, 1, df, startRow = 9, startCol = 2, borders = "surrounding")
writeData(wb, 1, df, startRow = 16, startCol = 2, borders = "rows")
writeData(wb, 1, df, startRow = 23, startCol = 2, borders ="columns")
writeData(wb, 1, df, startRow = 30, startCol = 2, borders ="all")

headerStyles

hsl <- createStyle(fgFill = "#4F81BD", halign = "CENTER", textDecoration = "Bold",
border = "Bottom", fontColour = "white")

writeData(wb, 1, df, startRow = 16, startCol = 10, headerStyle = hsi,

borders = "rows", borderStyle = "medium")

to change the display text for a hyperlink column just write over those cells
writeData(wb, sheet = 1, x = paste("Hyperlink", 1:5), startRow = 17, startCol = 14)

Warning: Overwriting existing cell data.

1

[1] 1

writing as an Excel Table

addWorksheet (wb, "writeDataTable")

writeDataTable(wb, 2, df, startRow = 2, startCol = 2)

writeDataTable(wb, 2, df, startRow = 9, startCol = 2, tableStyle = "TableStyleLight9")
writeDataTable(wb, 2, df, startRow = 16, startCol = 2, tableStyle = "TableStyleLight2")
writeDataTable(wb, 2, df, startRow 23, startCol = 2, tableStyle = "TableStyleMedium21")
openXL (wb)

Create our own style

Based on the above examples, we can combine some of the features to create our own style

wb <- createWorkbook()

addWorksheet (wb, "IrisOurOwnStyle")

writeDataTable(wb, 1, iris, startRow = 2, startCol = 2,
tableStyle = "TableStyleMediuml7",
headerStyle = createStyle(textRotation = 90))

openXL (wb)

With a larger test-data set

devtools::load_all()

Loading RZwToExcel

dfZw <- read.csv2(file = system.file(file.path("inst","extdata","testdata","csv","NewOrder.csv"),
package = "RZwToExcel"))
wb <- createWorkbook()
addWorksheet (wb, "Zuchtwerte")
writeDataTable(wb, 1, dfZw, startRow = 1, startCol = 1,
tableStyle = "TableStyleMediuml7",
headerStyle = createStyle(textRotation = 90))
saveWorkbook (wb, "ZwVMS.xlsx", overwrite = TRUE)

	Disclaimer
	Background
	Preparing steps
	Examples
	Create our own style

