R/mtlocalmoran.R

Defines functions print.summary.localmoransad summary.localmoransad as.data.frame.localmoransad print.localmoransad sadLocalMoran sadLocalMoranAlt localmoran.sad

Documented in as.data.frame.localmoransad localmoran.sad print.localmoransad print.summary.localmoransad summary.localmoransad

# Copyright 2002-2008 by Roger Bivand and Michael Tiefelsdorf,
# with contributions by Danlin Yu
#

localmoran.sad <- function (model, select, nb, glist = NULL, style = "W",
    zero.policy = NULL, alternative = "greater", spChk=NULL, 
    resfun=weighted.residuals,
    save.Vi = FALSE, tol = .Machine$double.eps^0.5,
    maxiter = 1000, tol.bounds=0.0001, save.M=FALSE, Omega=NULL) {
# need to impose check on weights TODO!!
# class to inherits Jari Oksanen 080603
    if (!inherits(nb, "nb"))
        stop(paste(deparse(substitute(nb)), "not an nb object"))
        if (is.null(zero.policy))
            zero.policy <- get("zeroPolicy", envir = .spdepOptions)
        stopifnot(is.logical(zero.policy))
    n <- length(nb)
    dmc <- deparse(model$call)
    if (!inherits(model, "lm"))
     	stop(paste(deparse(substitute(model)), "not an lm object"))
    u <- resfun(model)
    if (n != length(u)) 
        stop("objects of different length")
    if (is.null(spChk)) spChk <- get.spChkOption()
    if (spChk && !chkIDs(u, nb2listw(nb, zero.policy=zero.policy)))
	stop("Check of data and weights ID integrity failed")
    if (!(alternative %in% c("greater", "less", "two.sided")))
	stop("alternative must be one of: \"greater\", \"less\", or \"two.sided\"")
    if (missing(select)) select <- 1:n
    u <- as.vector(u)
    select <- unique(as.integer(select))
    if (length(select) < 1L) stop("select too short")
    if (any(select < 1) || any(select > n))
        stop("select out of range")
    utu <- c(t(u) %*% u)
    p <- model$rank
    p1 <- 1:p
    nacoefs <- which(is.na(coefficients(model)))
    m <- n - p - 2
    XtXinv <- chol2inv(model$qr$qr[p1, p1, drop = FALSE])
    X <- model.matrix(terms(model), model.frame(model))
# fixed after looking at TOWN dummy in Boston data
    if (length(nacoefs) > 0L) X <- X[,-nacoefs]
    if (!is.null(wts <- weights(model))) {
	X <- sqrt(diag(wts)) %*% X
    }
    cond.sad <- FALSE
    if (!is.null(Omega)) {
        Omega <- chol(Omega)
        M <- diag(n) - X %*% tcrossprod(XtXinv, X)
        M1 <- Omega %*% M
        M2 <- M %*% t(Omega)
        cond.sad <- TRUE
    }
    B <- listw2U(nb2listw(nb, glist=glist, style="B",
	zero.policy=zero.policy))
    D <- NULL
    a <- NULL
    if (style == "W") {
        D <- 1/sapply(B$weights, sum)
    } else if (style == "S") {
        D <- 1 / sqrt(sapply(B$weights, function(x) sum(x^2)))
#        a <- sum(unlist(B$weights))
# correction by Danlin Yu, 25 March 2004
	a <- sum(sapply(B$weights, function(x) sqrt(sum(x^2))))
    } else if (style == "C") a <- sum(unlist(B$weights))
    res <- vector(mode="list", length=length(select))
    for (i in 1:length(select)) {
        Vi <- listw2star(B, select[i], style=style, n, D, a,
	    zero.policy=zero.policy)
        Viu <- lag.listw(Vi, u, zero.policy=TRUE)
	Ii <- c((t(u) %*% Viu) / utu)
	if (cond.sad) {
            obj <- sadLocalMoranAlt(Ii, Vi, M1, M2, n, tol.bounds,
                tol, maxiter, ii=select[i], alternative=alternative)
            sad.p <- obj$sad.p
            sad.r <- obj$sad.r
            sad.u <- obj$sad.u
            omega <- obj$omega
            p.sad <- obj$p.sad
            gamma <- obj$gamma
	} else {
	    ViX <- lag.listw(Vi, X, zero.policy=TRUE)
	    MViM <- t(X) %*% ViX %*% XtXinv
	    t1 <- -sum(diag(MViM))
	    sumsq.Vi <- function(x) {
                if (is.null(x)) NA
	        else sum(x^2)
	    }
	    trVi2 <- sum(sapply(Vi$weights, sumsq.Vi), na.rm=TRUE)
	    t2a <- sum(diag(t(ViX) %*% ViX %*% XtXinv))
	    t2b <- sum(diag(MViM %*% MViM))
	    t2 <- trVi2 - 2*t2a + t2b
	    e1 <- 0.5 * (t1 + sqrt(2*t2 - t1^2))
	    en <- 0.5 * (t1 - sqrt(2*t2 - t1^2))
            gamma <- c(c(e1), c(en))
            obj <- sadLocalMoran(Ii, gamma, m, ii=select[i],
                alternative=alternative)
            sad.p <- obj$sad.p
            sad.r <- obj$sad.r
            sad.u <- obj$sad.u
            omega <- obj$omega
            p.sad <- obj$p.sad
            gamma <- obj$gamma
	}
        statistic <- sad.p
        attr(statistic, "names") <- "Saddlepoint approximation"
        p.value <- p.sad
        estimate <- c(Ii)
        attr(estimate, "names") <- "Observed Moran Ii"
        internal1 <- c(omega, sad.r, sad.u)
        attr(internal1, "names") <- c("omega", "sad.r", "sad.u")
        method <- paste("Saddlepoint approximation for local Moran I",
            "(Barndorff-Nielsen formula)")
        data.name <- paste("region:", select[i],
	    attr(nb, "region.id")[select[i]],
	    "\n", paste(strwrap(paste("model: ", gsub("[ ]+", " ", 
	    paste(dmc, sep="", collapse="")))),
	    collapse="\n"),
            "\nneighbours:", deparse(substitute(nb)),
	    "style:", style, "\n")
        obj <- list(statistic = statistic, p.value = p.value,
            estimate = estimate, method = method,
	    alternative = alternative, data.name = data.name,
	    internal1 = internal1, df = (n-p), tau = gamma,
	    i = paste(select[i], attr(nb, "region.id")[select[i]]),
#	    if (save.Vi) {Vi = Vi}
	    Vi = if(save.Vi) Vi else NULL)
        class(obj) <- "moransad"
	res[[i]] <- obj
    }
    class(res) <- "localmoransad"
    if (save.M && cond.sad) attr(res, "M") <- list(M1=M1, M2=M2, type="cond")
    if (save.M && !cond.sad) attr(res, "M") <- list(X=X, XtXinv=XtXinv,
        type="null")
    res
}

sadLocalMoranAlt <- function(Ii, Vi, M1, M2, n, tol.bounds=0.0001,
    tol = .Machine$double.eps^0.5, maxiter = 1000, ii, alternative="greater") {
    ViI <- listw2mat(Vi) - Ii * diag(n)
    innerTerm <- M1 %*% ViI %*% M2
    evalue <- eigen(innerTerm, only.values=TRUE)$values
    tau <- c(evalue)
    e1 <- tau[1]
    en <- tau[length(tau)]
    low <- (1 / (2*tau[length(tau)])) + tol.bounds #+ 0.01
    high <- (1 / (2*tau[1])) - tol.bounds #- 0.01
    f <- function(omega, tau) {sum(tau/(1 - (2*omega*tau)))}
    root <- uniroot(f, lower=low, upper=high, tol=tol, maxiter=maxiter,
      	tau=tau)
    omega <- root$root
# 0 should be expectation - maybe use try()
    if (omega < 0 ) sad.r <- try(-sqrt(sum(log(1 - 2*omega*tau))))
    else sad.r <- try(sqrt(sum(log(1 - 2*omega*tau))))
    if (inherits(sad.r, "try.error")) {
    	warning (paste("In zone:", ii, "sad.r not a number"))
        sad.r <- sad.u <- sad.p <- NaN
    } else { 
	sad.u <- omega * sqrt(2*sum(tau^2 / (1 - (2*omega*tau))^2))
    	sad.p <- sad.r - ((1/sad.r)*log(sad.r/sad.u))
    }
        if (alternative == "two.sided") p.sad <- 2 * pnorm(abs(sad.p), 
	    lower.tail=FALSE)
        else if (alternative == "greater")
            p.sad <- pnorm(sad.p, lower.tail=FALSE)
        else p.sad <- pnorm(sad.p)
    obj <- list(p.sad=p.sad, sad.p=sad.p, sad.r=sad.r, sad.u=sad.u,
        omega=omega, root=root, gamma=tau)
    obj
}

sadLocalMoran <- function(Ii, gamma, m, ii, alternative="greater") {
	e1 <- gamma[1]
	en <- gamma[2]
	l <- en
	h <- e1
	mi <- Ii
	aroot= m*mi*(l+h-2*mi)+mi*(3*l+3*h-4*mi)-2*l*h
        broot= (m+2)*mi*(l-mi)*(h-mi)
        c1root= l**2 * mi**2 * (m+1)**2 + h**2 * mi**2 * (m+1)**2
        c2root= 2*l*h * (2*l*h - 2*l*mi - 2*h*mi - 2*m*mi**2 -
	    m**2 * mi**2 + mi**2)
        omega= 0.25*((aroot-sqrt(c1root+c2root))/broot)
	if (is.nan(omega)) {
	    warning (paste("In zone:", ii, "omega not a number"))
	    sad.r <- sad.u <- sad.p <- NaN
	} else { 
            tau <- c(c(e1), rep(0, m), c(en))
	    taumi <- tau - Ii
            if (omega < 0 ) sad.r <- -sqrt(sum(log(1 - 2*omega*taumi)))
            else sad.r <- sqrt(sum(log(1 - 2*omega*taumi)))
            sad.u <- omega * sqrt(2*sum(taumi^2 / (1 - (2*omega*taumi))^2))
            sad.p <- sad.r - ((1/sad.r)*log(sad.r/sad.u))
	}
        if (alternative == "two.sided") p.sad <- 2 * pnorm(abs(sad.p), 
	    lower.tail=FALSE)
        else if (alternative == "greater")
            p.sad <- pnorm(sad.p, lower.tail=FALSE)
        else p.sad <- pnorm(sad.p)
	obj <- list(p.sad=p.sad, sad.p=sad.p, sad.r=sad.r, sad.u=sad.u,
            omega=omega, gamma=gamma)
        obj
}

print.localmoransad <- function(x, ...) {
    extract <- function(x, i) {x[[i]]}
    regnames <- sapply(x, extract, 10)
    est <- sapply(x, extract, 3)
    sad <- sapply(x, extract, 1)
    pval <- sapply(x, extract, 2)
    res <- as.matrix(cbind(est, sad, pval))
    rownames(res) <- regnames
    colnames(res) <- c("Local Morans I", "Saddlepoint", "Pr. (Sad)")
    print(res, ...)
    invisible(res)
}

as.data.frame.localmoransad <- function(x, row.names=NULL, optional=FALSE, ...) {
    n <- length(x)
    if (n < 1) stop("x too short")
    res <- matrix(0, nrow=n, ncol=14)
    regnames <- NULL
    if (!is.null(row.names)) 
	if (length(row.names) == n) regnames <- row.names
    if (is.null(regnames))for (i in 1:n) regnames <- c(regnames, x[[i]]$i)
    for (i in 1:n) {
        tau <- x[[i]]$tau
	df <- x[[i]]$df
        tau <- c(tau[1], rep(0, df-2), tau[2])
        max.I <- tau[1]
        min.I <- tau[length(tau)]
        E.I <- sum(tau)/df
        tau <- tau - E.I
        V.I <- (2*sum(tau^2)) / (df*(df+2))
        Z.I <- (x[[i]]$estimate - E.I) / sqrt(V.I)
	if (x[[i]]$alternative == "two.sided") 
	    P.I <- 2 * (1 - pnorm(Z.I))
        else if (x[[i]]$alternative == "greater")
            P.I <- pnorm(Z.I, lower.tail=FALSE)
        else P.I <- pnorm(Z.I)
        Sk.I <- ((8*sum(tau^3))/(df*(df+2)*(df+4))) / (V.I^(3/2))
        Kur.I <- ((48*sum(tau^4) + 12*(sum(tau^2))^2) /
            (df*(df+2)*(df+4)*(df+6))) / (V.I^2)
	res[i,] <- c(x[[i]]$estimate, Z.I, P.I, x[[i]]$statistic,
	    x[[i]]$p.value, E.I, V.I, Sk.I, Kur.I, min.I, max.I,
	    x[[i]]$internal1)
    }
    colnames(res) <- c("Local Morans I", "Stand. dev. (N)", "Pr. (N)",
        "Saddlepoint", "Pr. (Sad)", "Expectation", "Variance",
        "Skewness", "Kurtosis", "Minimum", "Maximum",
        "omega", "sad.r", "sad.u")
    rownames(res) <- regnames
    res <- as.data.frame(res)
    res
}

summary.localmoransad <- function(object, ...) {
    res <- as.data.frame(object)
    class(res) <- c("summary.localmoransad", class(res)) 
    res
}

print.summary.localmoransad <- function(x, ...) {
	print(as.data.frame(x), ...)
	invisible(x)
}
r-spatial/spdep documentation built on April 6, 2019, 2:16 a.m.