R/skater.R

Defines functions skater

Documented in skater

skater <- function(edges, data, ncuts, crit, vec.crit,
                   method=c("euclidean", "maximum", "manhattan",
                     "canberra", "binary", "minkowski",
                     "mahalanobis"), p=2, cov, inverted=FALSE) {
  if (any(class(edges)=="skater")) {
    res <- edges
    n <- length(res$groups)
  }
  else {
    n <- nrow(edges) + 1
    res <- list(groups=rep(1, n),
                edges.groups=list(list(node=1:n, edge=edges)),
                not.prune=NULL, candidates=1,
                ssto=ssw(data, 1:n, method, p, cov, inverted))
    res$ssw <- res$edges.groups[[1]]$ssw <- res$ssto
    tmp <- sort(prunecost(res$edges.groups[[1]]$edge[,1:2, drop=FALSE], 
                          data, method, p, cov, inverted), 
                decreasing=TRUE, method='quick', index.return=TRUE)
    res$edges.groups[[1]]$edge =
      cbind(res$edges.groups[[1]]$edge[tmp$ix, ], tmp$x)
    if (missing(crit))
      res$crit <- c(1, Inf)
    else
      res$crit <- crit
    if (missing(vec.crit))
      res$vec.crit <- rep(1,n)
    else
      res$vec.crit <- vec.crit
  }
  cuts <- length(res$edges.groups)
  if (missing(ncuts))
    ncuts <- n-cuts
  else
    ncuts <- ncuts+cuts-1
  if (is.null(res$vec.crit))
    res$vec.crit <- rep(1, n)
  if (is.null(res$crit))
    res$crit <- c(1, Inf)
  if (length(res$crit)==1)
    res$crit <- c(res$crit, Inf)
  res$candidates <- setdiff(1:length(res$edges.groups), res$not.prune)
  repeat {
    if (cuts>ncuts)
      break
    if (length(res$candidates)==0)
      break
    l.costs.ord <- lapply(res$edges.groups[res$candidates],
                          function(x) x$edge[,3])
    t.id <- rep(res$candidates, sapply(l.costs.ord, length))
    t.cost <- unlist(l.costs.ord)
    t.idi <- unlist(lapply(l.costs.ord, function(x) {
      if (length(x)>0)
        1:length(x)
      else
        NULL
    }))
    dc <- cbind(t.id, t.cost, t.idi)
    dc <- dc[sort(dc[,2], method="quick", decreasing=TRUE,
                  index.return=TRUE)$ix,, drop=FALSE]
    k <- 1
    repeat {
      toprun <- rbind(res$edges.groups[[dc[k,1]]]$edge[dc[k,3],1:2],
                      res$edges.groups[[dc[k,1]]]$edge[-dc[k,3],1:2])
      g.pruned <- prunemst(toprun, only.nodes=FALSE)
      scrit <- sapply(g.pruned, function(x) sum(res$vec.crit[x$node]))
      cond <- any(findInterval(scrit, res$crit, TRUE)!=1)
      if (cond) {
        id.not <- !is.element(res$candidates, unique(dc[-(1:k),1]))
        res$not.prune <- unique(c(res$not.prune, res$candidates[id.not]))
        res$candidates <- setdiff(1:length(res$edges.groups),
                                  res$not.prune)
        k <- k + 1
        if (k>nrow(dc)) {
          break
        }
      }
      else {
        gc.pruned <- lapply(g.pruned, function(e) {
          if (nrow(e$edge)==0)
            return(list(node=e$node, edge=matrix(0,0,3),
                        ssw=ssw(data, e$node, method, p, cov, inverted)))
          else {
            tmp <- sort(prunecost(e$edge[, 1:2, drop=FALSE], data,
                                  method, p, cov, inverted),
                        decreasing=TRUE, method='quick', index.return=TRUE) 
            list(node=e$node,
                 edge=cbind(e$edge[tmp$ix, , drop=FALSE], tmp$x),
                 ssw=ssw(data, e$node, method, p, cov, inverted))
          }
        })
        res$edges.groups[[dc[k,1]]] <- gc.pruned[[1]]
        cuts <- cuts + 1
        res$edges.groups[[cuts]] <- gc.pruned[[2]]
        res$ssw <- c(res$ssw, sum(sapply(res$edges.groups,
                                         function(e) sum(e$ssw))))
        res$candidates <- setdiff(1:length(res$edges.groups), res$not.prune)
        break
      }
    }
  }
  for (i in 1:length(res$edges.groups))
    res$groups[res$edges.groups[[i]]$node] <- i
  attr(res, "class") <- "skater"
  return(res)
}
r-spatial/spdep documentation built on April 6, 2019, 2:16 a.m.