set.seed(123)
library(yardstick) # métricas
predictions <-
data.frame(truth = runif(100),
predict_model_1 = rnorm(100, mean = 1,sd =2),
predict_model_2 = rnorm(100, mean = 0,sd =2),
predict_model_3 = rnorm(100, mean = 0,sd =3))
multieval(.dataset = predictions,
.observed = "truth",
.predictions = c("predict_model_1","predict_model_2","predict_model_3"),
.metrics = list(rmse = rmse, rsq = rsq, mae = mae),
value_table = TRUE)
# Output ----------------------
# A tibble: 9 x 4
# .metric .estimator .estimate model
# <chr> <chr> <dbl> <chr>
# 1 mae standard 1.45 predict_model_1
# 2 mae standard 1.67 predict_model_2
# 3 mae standard 2.43 predict_model_3
# 4 rmse standard 1.78 predict_model_1
# 5 rmse standard 2.11 predict_model_2
# 6 rmse standard 3.01 predict_model_3
# 7 rsq standard 0.00203 predict_model_1
# 8 rsq standard 0.0158 predict_model_2
# 9 rsq standard 0.00254 predict_model_3
#$summary_table
# A tibble: 3 x 4
# model mae rmse rsq
# <chr> <dbl> <dbl> <dbl>
# 1 predict_model_1 1.45 1.78 0.00203
# 2 predict_model_2 1.67 2.11 0.0158
# 3 predict_model_3 2.43 3.01 0.00254
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.