
1 Introduction

Conditional, mixed continuous and discrete, non-diagonal bw, smoothing, periodic kernel specification

2 Method Description

Suppose we observe zt = {zt,1, . . . , zt,D} ∈ RD at each point in time t = 1, . . . , T . Our goal is to obtain a predictive
distribution for one of the observed variables, with index dpred ∈ {1, . . . , D}, over a range of prediction horizons
contained in the set P. For example, if we have weekly data and we are interested in obtaining predictions for a
range between 4 and 6 weeks after the most recent observation then P = {4, 5, 6}. Let P be the largest element of
the set P of prediction horizons.

In order to perform prediction, we will use lagged observations. Let lmax = (lmax1 , . . . , lmaxD) specify the maximum
number of lags for each observed variable that may be used for prediction, and let L = max dlmaxd be the overall
largest lag that may be used across all variables. In the estimation procedure we describe in Section 3, we will select
a subset of these lags to actually use in the predictions. We capture which lags are actually used in the vector

u = (u1,0, . . . , u1,lmax
1

, . . . , uD,0, . . . , uD,lmax
D

), where

ud,l =

{
0 if lag l of variable d is not used in forming predictions

1 if lag l of variable d is used in forming predictions.

By analogy with the standard notation in autoregressive models, we define

yt = (zt,dpred , . . . , B
(P−1)zt,dpred) and

xt = (B(P)zt,1, . . . , B
(P+lmax

1 −1)zt,1, . . . , B
(P)zt,D, . . . , B

(P+lmax
D −1)zt,D)

Here, B(a) is the backshift operator defined by B(a)zt,d = zt−a,d. Note that the lengths of yt and xt, as well as
exactly which lags are used to form them, depend on P and lmax; we suppress this dependence in the notation for
the sake of clarity. The vector yt represents the prediction target when our most recent observation was made at
time t − P : the vector of observed values at each prediction horizon p ∈ P. The variable xt represents the vector
of all lagged covariates that are available for use in performing prediction.

To make the notation concrete, suppose that zt contains the observed case count for week t in San Juan, the
observed case count for week t in Iquitos, and the date on Monday of week t, and our goal is to predict the weekly
case count in San Juan. Then D = 3 and dpred = 1. If we want to predict the weekly case counts for the two weeks
after the most recently observation, then p = 2. If we specify that the model may include the two most recent
observations for the case counts in San Juan and Iquitos, but only the time index at the most recent observation
then lmax = (1, 1, 0). If our current model uses only the most recently observed case counts for San Juan and
Iquitos then u = (1, 0, 1, 0, 0), where the 1’s are in the positions of the u vector representing lag 0 of the counts for

San Juan and lag 0 of the counts for Iquitos. The variable y
(P)
t is a vector containing the observed case counts for

San Juan in weeks t + 1 and t + 2; x
(lmax)
t contains the observed case counts for San Juan and Iquitos in weeks t

and t− 1 as well as the time index variable in week t.
In order to perform prediction, we regard {(yt,xt), t = 1 +P +L, . . . , T} as a sample from the joint distribution

of (Y,X). We wish to estimate the conditional distribution of Y|X. In order to do this, we employ kernel density
estimation. Let KY(y,y∗, HY) and KX(x,x∗, HX) be kernel functions centered at y∗ and x∗ respectively and

1

with bandwidth matrices HY and HX. We estimate the conditional distribution of Y|X as follows:

f̂Y|X(y|X = x) =
f̂Y,X(y,x)

f̂X(x)
(1)

=

∑
t∈τ K

Y,X{(y,x), (yt,xt), H
Y,X}∑

t∈τ K
X(x,xt, HX)

(2)

=

∑
t∈τ K

Y|X(y,yt|x,xt, HY,X)KX(x,xt, H
X)∑

t∈τ K
X(x,xt, HX)

(3)

=
∑
t∈τ

wtK
Y|X(y,yt|x,xt, HY,X), where (4)

wt =
KX(x,xt, H

X)∑
t∗∈τ K

X(x,xt∗ , HX)
(5)

In Equation (1), we are simply making use of the fact that the conditional density for Y|X can be written as the
quotient of the joint density for (Y,X) and the marginal density for X. In Equation (3), we obtain separate kernel
density estimates for the joint and marginal densities in this quotient. In Equation (4), we rewrite this quotient
by passing the denominator of Equation (3) into the summation in the numerator. We can interpret the result
as a weighted kernel density estimate, where each observation t ∈ τ contributes a different amount to the final
conditional density estimate. The amount of the contribution from observation t is given by the weight wt, which

effectively measures how similar xt is to the point x at which we are estimating the conditional density. If x
(lmax)
t

is similar to x
(lmax)
t∗ , a large weight is assigned to t; if x

(lmax)
t is different from x

(lmax)
t∗ , a small weight is assigned to

t.
In kernel density estimation, it is generally required that the kernel functions integrate to 1 in order to obtain

valid density estimates. However, after conditioning on X, it is no longer necessary that KX(x,xt, H
X) integrate

to 1. In fact, as can be seen from Equation (5), any multiplicative constants of proportionality will cancel out when
we form the observation weights. We can therefore regard KX(x,xt, H

X) as a more general weighting function that
measures the similarity between x and xt. As we will see, eliminating the constraint that KX integrates to 1 is a
useful expansion the space of functions that can be used in calculating the observation weights. However, we still
require that KY integrates to 1.

In Equations (1) through (5), τ is an index set of time points used in obtaining the density estimate. In most
settings, we can take τ = {1+P+L, . . . , T}. These are the time points for which we can form the lagged observation
vector xt and the prediction target vector yt. However, we will place additional restrictions on the time points
included in τ in the cross-validation procedure discussed in Section 3.

If we wish to obtain point predictions, we can use a summary of the predictive density. For example, if we take
the expected value, we obtain kernel regression:

(Ŷ|X = x) = Ef̂Y|X{Y|X = x} (6)

=

∫ ∑
t∈τ

wtK
Y(y,yt, H

Y)y dy (7)

=
∑
t∈τ

wtyt (8)

The equality in Equation (8) holds if the kernel function KY(y,yt, H
Y) is symmetric about yt, or more generally

if it is the pdf of a random variable with expected value yt.
Another alternative that we pursue is the use of smoothed observations in forming the lagged observation

vectors. We use smoothed case counts on a log scale for the weighting kernels, and the unsmoothed case counts on
the original scale for the prediction kernels.

3 Parameter Estimation

We use cross-validation to select the variables that are used in the model and estimate the corresponding bandwidth
parameters by (approximately) minimizing a cross-validation measure of the quality of the predictions obtained from

2

the model. Formally,

(û, ĤX, ĤY) ≈ argmin
(u,HX,HY)

T∑
t∗=1+P+L

Q[yt∗ , f̂(y|X = xt∗ ;u, H
X, HY, {(yt,xt) : t ∈ τt∗})] (9)

Here, Q is a loss function that measures the quality of the estimated density f̂ given an observation yt∗ . We have
made the dependence of this estimated density on the the parameters u, Hx, and HY, as well as on the data
{(yt,xt) : t ∈ τt∗}, explicit in the notation. In order to reduce the potential for our parameter estimates to be
affected by local correlation in the time series, we eliminate all time points that fall within one year of t∗ from the
index set τt∗ used to form the conditional density estimate f̂(y|X = xt∗ ;u, H

X, HY, {(yt,xt) : t ∈ τt∗}).
Talk about proper scoring rules and our particular choice of Q.

We use a forward/backward stagewise procedure to obtain the set of combinations of variables and lags that
are included in the final model (represented by u). For each candidate model, we use the limited memory box
constrained optimization procedure of [Byrd et al.(1995)Byrd, Lu, Nocedal, and Zhu] to estimate the bandwidth
parameters. The approximation in Equation (9) is due to the fact that this optimization procedure may not find a
global minimum.

4 Examples

In this Section, we illustrate the methods through applications to prediction in examples with several real time
series data sets.

4.1 Example 1: Influenza Prediction

In our first and simplest example, we apply the method for prediction of influenza with prediction horizons of 1
through 4 weeks. Data on influenza incidence are available through R’s cdcfluview package. Here we create a data
set with a nationally aggregated measure of flu incidence

library(cdcfluview)

library(dplyr)

library(lubridate)

library(ggplot2)

library(grid)

library(kcde)

usflu<-get_flu_data("national", "ilinet", years=1997:2015)

##

| | 0 % ~calculating

|++| 100% elapsed = 00s

ili_national <- transmute(usflu,

region.type = REGION.TYPE,

region = REGION,

year = YEAR,

week = WEEK,

total_cases = as.numeric(X..WEIGHTED.ILI))

Warning in eval(substitute(expr), envir, enclos): NAs introduced by coercion

ili_national$time <- ymd(paste(ili_national$year, "01", "01", sep = "-"))

week(ili_national$time) <- ili_national$week

ili_national$time_index <- seq_len(nrow(ili_national))

str(ili_national)

3

'data.frame': 989 obs. of 7 variables:

$ region.type: chr "National" "National" "National" "National" ...

$ region : chr "X" "X" "X" "X" ...

$ year : int 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 ...

$ week : int 40 41 42 43 44 45 46 47 48 49 ...

$ total_cases: num 1.1 1.2 1.38 1.2 1.66 ...

$ time : Date, format: "1997-10-01" "1997-10-08" ...

$ time_index : int 1 2 3 4 5 6 7 8 9 10 ...

We plot the total cases measure over time, representing missing values with vertical grey lines. The low season
was not measured in the first few years.

ggplot() +

geom_line(aes(x = as.Date(time), y = total_cases), data =

ili_national) +

geom_vline(aes(xintercept = as.numeric(as.Date(time))),

colour = "grey",

data = ili_national[is.na(ili_national$total_cases),]) +

scale_x_date() +

xlab("Time") +

ylab("Total Cases") +

theme_bw()

4

0

2

4

6

8

2000 2005 2010 2015
Time

To
ta

l C
as

es

There are several methods that we could employ to handle these missing data:

1. Impute the missing values. They are all in the low season, so this should be relatively easy to do.

2. Drop all data up through the last NA.

3. Use the data that are available.

Of these approaches, the first is probably preferred. The concern with the second is that we are not making use of
all of the available data. The potential concern with the third is that in the data used in estimation, there will be
more examples of prediction of values in the high season using values in the high season and middle of the season
than of prediction of values in the high season using values in the low season. This could potentially affect our
inference. However, we do not expect this effect to be large, so we proceed with this option for the purposes of this
example.

We also plot histograms of the observed total cases on the original scale and on the log scale.

5

hist_df <- rbind(

data.frame(value = ili_national$total_cases,

variable = "Total Cases"),

data.frame(value = log(ili_national$total_cases),

variable = "log(Total Cases)")

)

ggplot(aes(x = value), data = hist_df) +

geom_histogram() +

facet_wrap(~ variable, ncol = 2) +

xlab("Total Cases") +

theme_bw()

‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

Warning: Removed 190 rows containing non-finite values (stat bin).

6

Total Cases log(Total Cases)

0

50

100

150

0 2 4 6 8 0 2 4 6 8
Total Cases

co
un

t

These plots demonstrate that total cases follows an approximately log-normal distribution. In the application
below, we will consider modeling these data on both the original scale and the log scale. Intuitively, since we are
using a kernel that is obtained from a Gaussian, modeling the data on the log scale should yield better performance.
On the other hand, the performance gain may be negligible if we have enough data.

Finally, we plot the autocorrelation function:

last_na_ind <- max(which(is.na(ili_national$total_cases)))

non_na_inds <- seq(from = last_na_ind + 1, to=nrow(ili_national))

acf(ili_national$total_cases[non_na_inds],

lag.max = 52 * 4)

7

0 50 100 150 200

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F
Series ili_national$total_cases[non_na_inds]

This plot illustrates the annual periodicity that was also visible in the initial data plot above. There is no
apparent evidence of longer term annual cycles. We therefore include a periodic kernel acting on the time index
with a period of 52.2 weeks (the length of the period is motivated by the fact that in our data, there is a year with
53 weeks once every 5 or 6 years).

We now do some set up for estimation and prediction with kcde. First, we create a list with parameters that
specify the kernel function components.

Definitions of kernel components. A couple of notes:

1) In the current implementation, it is required that separate kernel

components be used for lagged (predictive) variables and for leading

(prediction target) variables.

2) The current syntax is verbose; in a future version of the package,

convenience functions may be provided.

8

Define kernel components -- 3 pieces:

1) Periodic kernel acting on time index

2) pdtmvn kernel acting on lagged total cases (predictive) -- all continuous

3) pdtmvn kernel acting on lead total cases (prediction target) -- all continuous

kernel_components <- list(

list(

vars_and_offsets = data.frame(var_name = "time_index",

offset_value = 0L,

offset_type = "lag",

combined_name = "time_index_lag0",

stringsAsFactors = FALSE),

kernel_fn = periodic_kernel,

theta_fixed = list(period=pi / 52.2),

theta_est = list("bw"),

initialize_kernel_params_fn = initialize_params_periodic_kernel,

initialize_kernel_params_args = NULL,

vectorize_kernel_params_fn = vectorize_params_periodic_kernel,

vectorize_kernel_params_args = NULL,

update_theta_from_vectorized_theta_est_fn = update_theta_from_vectorized_theta_est_periodic_kernel,

update_theta_from_vectorized_theta_est_args = NULL

),

list(

vars_and_offsets = data.frame(var_name = "total_cases",

offset_value = 1L,

offset_type = "horizon",

combined_name = "total_cases_horizon1",

stringsAsFactors = FALSE),

kernel_fn = pdtmvn_kernel,

rkernel_fn = rpdtmvn_kernel,

theta_fixed = list(

parameterization = "bw-diagonalized-est-eigenvalues",

continuous_vars = "total_cases_horizon1",

discrete_vars = NULL,

discrete_var_range_fns = NULL,

lower = -Inf,

upper = Inf

),

theta_est = list("bw"),

initialize_kernel_params_fn = initialize_params_pdtmvn_kernel,

initialize_kernel_params_args = NULL,

vectorize_kernel_params_fn = vectorize_params_pdtmvn_kernel,

vectorize_kernel_params_args = NULL,

update_theta_from_vectorized_theta_est_fn = update_theta_from_vectorized_theta_est_pdtmvn_kernel,

update_theta_from_vectorized_theta_est_args = NULL

))

#,

list(

vars_and_lags = vars_and_lags[3:5,],

kernel_fn = pdtmvn_kernel,

rkernel_fn = rpdtmvn_kernel,

theta_fixed = NULL,

theta_est = list("bw"),

initialize_kernel_params_fn = initialize_params_pdtmvn_kernel,

9

initialize_kernel_params_args = list(

continuous_vars = vars_and_lags£combined_name[3:4],

discrete_vars = vars_and_lags£combined_name[5],

discrete_var_range_fns = list(

c_lag2 = list(a = pdtmvn::floor_x_minus_1, b = floor, in_range = pdtmvn::equals_integer, discretizer = round_up_.5))

),

vectorize_theta_est_fn = vectorize_params_pdtmvn_kernel,

vectorize_theta_est_args = NULL,

update_theta_from_vectorized_theta_est_fn = update_theta_from_vectorized_theta_est_pdtmvn_kernel,

update_theta_from_vectorized_theta_est_args = list(

parameterization = "bw-diagonalized-est-eigenvalues"

)

))

Next, we create a list with parameters controlling how estimation is performed.

kcde_control <- create_kcde_control(X_names = "time_index",

y_names = "total_cases",

time_name = "time",

prediction_horizons = 1L,

kernel_components = kernel_components,

crossval_buffer = ymd("2010-01-01") - ymd("2009-01-01"),

loss_fn = neg_log_score_loss,

loss_fn_prediction_args = list(

prediction_type = "distribution",

log = TRUE),

filter_control <- NULL,

loss_args = NULL,

prediction_inds_not_included = c())

We are now ready to estimate the bandwidth parameters, using data up through 2014

flu_kcde_fit_orig_scale <- kcde(data = ili_national[ili_national£year <= 2014,],

kcde_control = kcde_control)

There are several methods available for examining the predictive distribution. Here we simply draw a monte
carlo sample from the predictive distribution for total cases in the first week of 2015. Then we plot a representation
of this sample against the observed value for that week.

predictive_sample <- kcde_predict(kcde_fit = flu_kcde_fit_orig_scale,

prediction_data = ili_national[ili_national£year == 2014 & ili_national£week == 53, , drop = FALSE],

leading_rows_to_drop = 0,

trailing_rows_to_drop = 1L,

additional_training_rows_to_drop = NULL,

prediction_type = "sample",

n = 10000L)

ggplot() +

geom_density(aes(x = predictive_sample)) +

geom_vline(aes(xintercept = ili_national£total_cases[ili_national£year == 2015 & ili_national£week == 1]),

colour = "red") +

xlab("Total Cases") +

ylab("Predictive Density") +

ggtitle("Realized total cases vs. one week ahead predictive density\nWeek 1 of 2015") +

theme_bw()

10

5 Publications

[Byrd et al.(1995)Byrd, Lu, Nocedal, and Zhu] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A
limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing, 16(5):
1190–1208, 1995.

11

