
chromploid Package
Rosana Zenil-Ferguson

2017-10-09

Overview of Chromploid

Chromploid is a package that calculates the negative log-likelihood function forrates of chromosome number
or ploidy change models in phylogenetic trees. Currently, chromploid includes four different models of
chromosome number or ploidy evolution: BiChroM, BiChroM linear (beta), PloidEvol, and ChromEvol
M3. Users can choose among these three models but if interested Chromploid package can be extended to
accomodate custom chromosome number or ploidy change models.

About the models included

1. BiChroM: A continuous time Markov chain that links the evolution of chromosome number change to a
binary trait. This model contains 10 parameters that represent rates (change per time).1

2. BiChroM linear: BETA VERSION. A continuous time Markov chain that links the evolution of
chromosome number change to a binary trait where the rates of binary trait change are linear functions
of chromosome number. This model is define via 12 parameters that represent rates of evolution (change
per time).

3. PloidEvol: A continuous time Markov chain that models the evolution of ploidy change. This model
contains 6 parameters that represent rates of ploidy evolution (change per time)2.

4. ChromEvol M3: A continuous time Markov chain that models the evolution of chromosome number
change. The model has 4 parameters that represent rates of chromosome number change. This model
was proposed by Mayrose et al. (2010)3

Installation

You’ll need package devtools. Chromploid is easily installed from github
library("devtools")
devtools::install_github("roszenil/chromploid")
library("chromploid")
library("geiger")
library("nloptr")
#chromploid depends on geiger and nloptr so don't forget to load the packages

Negative log likelihood

The function chromploid_nllike() is possibly the most important and critical of the package. It calculates
the negative log-likelihood of any discrete trait model for chromosome number or ploidy change. Minimizing
negative log-likelihoods allows us to infer model parameters, that is, obtaining maximum likelihood estimates
(MLEs), profile likelihoods, likelihood-confidence intervals, and likelihood ratio tests necessary to answer
biological questions. I will describe how to use this important function after introducing the models coded in
chromploid.

1Zenil-Ferguson, R., Ponciano, J.M. and Burleigh, J.G., 2017. Testing the association of phenotypes with polyploidy: An
example using herbaceous and woody eudicots. Evolution. 71(5):1138-1148.

2Zenil-Ferguson et al. in prep
3Mayrose, I., Barker, M.S. and Otto, S.P., 2010. Probabilistic models of chromosome number evolution and the inference of

polyploidy. Systematic Biology, 59(2), pp.132-144.

1

BiChroM

BiChroM -Binary trait associated with chromosome number change model- is a continuous time Markov
chain (CTMC) that allows for estimation and testing of chromosomal change rates correlated with a binary
trait. The model is defined via 10 parameters that represent rates of chromosomal change linked to a value of
a binary trait. BiChroM allows for testing the association of chromosomal change (polyploidy) to phenotypic
change.

Description of parameters in BiChroM:

• λ0, λ1: Rate of gain in one chromosome for taxa with binary trait 0, or binary trait 1 respectively.
• µ0, µ1: Rate of loss in one chromosome for taxa with binary trait 0, or binary trait 1 respectively.
• ρ0, ρ1: Rate of chromosome doubling for taxa with binary trait 0, or binary trait 1 respectively.
• q01, q10: Rate of transition between binary state values, from 0 to 1 or vice versa.
• ε0, ε1: Ancillary parameters of chromosomal changes. Rate of chromosome number changes after size

has been determined.

Full inference for BiChroM model

Inferences using BiChoM model require different functions that allow the calculation of full and partial
likelihoods for the parameters. For example, when the goal is to estimate rates, the full likelihood of 10
parameters should be calculated and optimized, but if the goal of the inference is to assess the uncertainty
about a single parameter then a univariate likelihood should be the calculated.

Each of the functions listed below creates a Q-matrix, a matrix that defines the rates of chromosomal
change linked to the binary trait. The difference among these functions is that each one builds the necessary
mathematics to create a different likelihood function, thus, allowing for different types of inference.

• Q_bichrom(): Creates the Q-matrix (instantaneous probability rate matrix) for the full model, that
allows for calculation of maximum likelihood estimates.

• Q_unichrom(): Creates the marginal Q-matrix necessary for calculation of univariate profile likelihoods.
Used to assess the uncertainty surrounding an individual parameter.

• Q_bibichrom(): Creates the marginal Q-matrix necessary for calculation of bivariate profile likeli-
hoods.Used to assess the uncertainty of two parameters at a time, allows to detect problems with
parameter identifiability.4

• Q_reducedbichrom(): Creates the marginal Q-matrix necessary for calculation of likelihood ratio tests.
• bichrom_dataset(): Transforms a data set of chromosome and binary traits to input in the functions

above

2. BiChroM simulation and estimation

• Choose a set of fixed parameter values. For example (λ0, λ1, µ0, µ1, ρ0, ρ1, q01, q10, ε0, ε1) =
(0.12, 0.001, 0.25, 0.002, 0.036, 0.006, 0.04, 0.02, 1.792317852, 1.57e− 14)

• Calculate BiChroM Q-matrix All parameters in BiChroM are used in log scale because numerical
calculations are easier than in original scale.

log.params <- log(c(0.12, 0.001, 0.25, 0.002, 0.036, 0.006, 0.04,
0.02, 1.792317852, 1.57e-14))

N <- 50
mymatrix <- Q_bichrom(log.theta = log.params, size = N)

• Simulate a tree with 500 taxa and BiChroM values Assuming that the root of the tree has a value 56
means that the root is has 5 haploid chromosomes and its binary type is 1.

4Ponciano, J.M., Burleigh, J.G., Braun, E.L. and Taper, M.L., 2012. Assessing parameter identifiability in phylogenetic
models using data cloning. Systematic biology, p.sys055.

2

mytree<- sim.bdtree(b=0.055, stop="taxa", n=500, seed=1)
Seed was fixed to obtain always the same tree for this tutorial
plot(mytree,type="fan",cex=0.2, no.margin=TRUE)

s1
s2
s3
s4
s5
s6
s7
s8
s9
s10
s11
s12
s13
s14
s15
s16
s17
s18
s19
s20
s21
s22
s23
s24
s25s26s27s28s29s30s31s32s33s34s35s36s37s38s39s40s41s42s43s44s45s46s47s4

8s4
9s5

0s5
1s5

2s5
3s5

4s5
5s5

6s5
7s5

8s5
9s6

0s6
1s6

2s6
3s6

4s6
5s6

6s6
7s6

8s6
9s7

0s7
1s7

2s7
3s7

4s7
5s7

6s7
7s7
8s7
9s8
0s8
1s8
2s8
3s8
4s8
5s8
6s8
7s8
8s8
9s9
0s9
1s9
2s9
3

s9
4

s9
5

s9
6

s9
7

s9
8

s9
9

s1
00

s1
01

s1
02

s1
03

s1
04

s1
05

s1
06

s1
07

s1
08

s1
09

s1
10

s1
11

s1
12

s1
13

s1
14

s1
15

s1
16

s1
17

s1
18

s1
19

s1
20

s1
21

s1
22

s1
23

s1
24

s1
25

s1
26

s127
s128
s129
s130
s131
s132
s133
s134
s135
s136
s137
s138
s139
s140
s141
s142
s143
s144
s145
s146
s147
s148
s149
s150
s151
s152
s153
s154

s155

s156

s157

s158

s159

s160

s161

s162

s163

s164

s165

s166

s167

s168

s169

s170

s171

s172

s173

s174

s175

s176

s177

s178

s179

s180

s181

s182

s183

s184s185s186s187s188s189s190s191s192s193s194s195s196s197s198s199s200s201s202s203s204s205s206s207s208s209s210s211s212s213s214s215s216s217s218s219s220s221s222s223s224s225s226s227s228s229s230s231s232s233s234
s235
s236
s237
s238
s239
s240
s241
s242
s243
s244
s245
s246
s247
s248
s249
s250
s251
s252
s253
s254
s255
s256
s257
s258
s259
s260
s261
s262
s263
s264
s265
s266
s267
s268
s269
s270
s271
s272
s273
s274
s275
s276
s277
s278
s279

s280

s281

s282

s283

s284

s285

s286

s287

s288

s289

s290

s291

s292

s293

s294

s295

s296

s297

s2
98

s2
99

s3
00

s3
01

s3
02

s3
03

s3
04

s3
05

s3
06

s3
07

s3
08

s3
09

s3
10

s3
11

s3
12

s3
13

s3
14

s3
15

s3
16

s3
17

s3
18

s3
19

s3
20

s3
21

s3
22

s3
23

s3
24

s3
25

s3
26

s3
27

s3
28

s3
29

s3
30

s3
31

s3
32

s3
33

s3
34

s3
35

s3
36

s3
37

s3
38

s3
39

s3
40

s3
41

s3
42

s3
43

s3
44

s3
45

s3
46

s3
47

s3
48

s3
49

s3
50

s3
51

s3
52

s3
53

s3
54

s3
55

s3
56

s3
57

s3
58

s3
59

s3
60

s3
61

s3
62

s3
63

s3
64

s3
65

s3
66

s3
67

s3
68

s3
69

s3
70

s3
71

s3
72

s3
73

s3
74

s3
75

s3
76

s377
s378
s379
s380
s381
s382
s383
s384
s385
s386
s387
s388
s389
s390
s391
s392
s393
s394
s395
s396
s397
s398
s399
s400

s401
s402

s403
s404

s405
s406

s407
s408

s409
s410

s411
s412

s413
s414

s415
s416

s417
s418

s419
s420

s421
s422

s423
s424

s425
s426

s427
s428

s429
s430

s431
s432

s433
s434

s435
s436

s437
s438

s439

s440

s441

s442

s443

s444

s445

s446

s447

s448

s449

s450

s451

s452

s453

s454

s455

s456

s457

s458

s459

s460

s461

s462

s463

s464

s465

s466

s467

s468

s469

s470

s471

s472

s473
s474
s475
s476
s477
s478
s479
s480
s481
s482
s483
s484
s485
s486
s487
s488
s489
s490
s491
s492
s493
s494
s495
s496
s497
s498
s499
s500

set.seed(1) #Seed was fixed to obtain always the same sample for this tutorial
mysample<- chromploid_sim.char(phy=mytree, par=mymatrix,model="discrete", root=56)

• Calculate the likelihood of the tree, assuming that the root has a uniform distribution for chromosome
number and binary state pi.0=NULL (other options for the root are available, like Maddison and Fitzjohn
(2009)). The value of the negative log-likelihood nllike in this example is 943.9293, since we fixed the
random seed, and it is calculated as follows.

nllike <- chromploid_nllike(log.par = log.params, phy = mytree,
tip.values = mysample, pi.0 = NULL, Q.FUN = Q_bichrom, Q.ARGS = list(size = 50))

nllike

[1] 943.9293

If you have the following error appearing
Error in tip.values[i, charnum + 1] : incorrect number of
dimensions

this indicates that you don’t have in the first column the species names and in the second column the sample
for BiChrom. An easy way to fix it is converting your sample into a data frame with first column having taxa
names and second column having the sample needed in BiChroM just as chromploid_sim.char does.
mysample <- data.frame(taxa = rownames(mysample), sample = as.numeric(mysample))
head(mysample)

3. BiChrom optimization Usually you don’t know the values of the parameters and what you need is toto

3

find the maximum likelihood estimates of the parameters determined by BiChroM. In this case, you can
optimize (minimize) the negative log-likelihood with any R optimizer given that you have a phylogenetic
tree and a sample of chromosome numbers and binary trait using the function chromploid_nllike.
I have written a shortcut in the optimization using function chromploid_optim but if you think
that the likelihood surface is complicated I suggest using your own customiza optimizer with the
negative-log likelihood function. In addition, loading the package nloptr will help time consuming
calculations because it makes very accurate searches in the parametric space. The cost of using nloptr
is computational time.

Optimizations take hours to run, I suggest you run this
routine in a cluster. For a 4700 tip tree starting with a
x.0 close to the maximum it can take up to 96 hrs.

library(nloptr)
x.0 <- log(c(0.12, 0.001, 0.25, 0.002, 0.036, 0.006, 0.04, 0.02,

1.792317852, 1.57e-14))
value where the optimization algorithm is going to start. A
vector of 10 values for the parameters in log scale

model.args <- list(size = 50)
optimization.bichrom <- chromploid_optim(phy.tree = mytree, tip.values = mysample,

model = "bichrom", model.args = model.args, starting.val = x.0,
root.dist = NULL)

print(optimization.bichrom)

The vector optimization.bicrhom contains in the first 10 entries maximum likelihood estimates of parameters
(λ0, λ1, µ0, µ1, ρ0, ρ1, q01, q10, ε0, ε1). Then the negative log likelihood value at the MLE, and finally the status
of the convergence to the optimum inherited from package nloptr. Do not expect good estimates for ε0
and ε1 since by definition these are ancillary parameters that prevent biases for the other 8 that are key
to understand chromosomal change (see Zenil-Ferguson et al. 2017 for details). The eleventh entry in
optimization.bicrhom is the value of the negative log-likelihood at the maximum likelihood estimates and
it is a useful when you want to plot relative profile likelihoods or calculate likelihood ratio tests.

4. Likelihood Ratio Test To calculate the likelihood of the reduced model needed for likelihood ratio
tests you can use the function chromploid_nllike with Q-matrix Q_reducedbichrom or use the
wrapper optimization function chromploid_optim. The example here tests if the rates associated with
chromosome doubling under the different values of the binary trait are equal that is H0 : ρ = ρ0 = ρ1

x.0 <- log(c(0.12, 0.001, 0.25, 0.002, 0.01, 0.04, 0.02, 1.792317852,
1.57e-14))

Value where the optimization algorithm is going to start. A
vector of 9 values for the parameters in log scale. The
value of the hypothesis here is rho=0.010

model.args = list(size = 50, equal.param = c("rho0", "rho1"),
location.par = 5)

Q.ARGS is a list that has all the arguments included in
Q_reducedbichrom that are not the parameters size= maximum
number of haploid chromosome numbers to consider in your
sample, equal.params=which parameters are equal based on
the hypothesis H0, location.par is the position in the
vector where rho value appears

optimization.reducedbichrom <- chromploid_optim(phy.tree = mytree,
tip.values = mysample, model = "reducedbichrom", model.args = model.args,

4

starting.val = x.0, root.dist = NULL)

The vector optimization.reducedbicrhom contains in the first 9 entries maximum likelihood estimates of
parameters (λ0, λ1, µ0, µ1, ρ, q01, q10, ε0, ε1). Then the negative log likelihood value at the MLE, and finally
the status of the convergence to the optimum inherited from package nloptr.

print(optimization.reducedbichrom) “‘

Finally the value of the likelihood ratio test for H0 : ρ0 = ρ1 hypothesis is simply D = 2 ×
(reduced bichrom nloglike − full model nloglike) that has a χ2

(1) distribution
neglog.red <- optimization.reducedbichrom[10]
neglog.full <- optimization.bichrom[11]
alpha <- 0.05
D = 2 * (neglog.red - neglog.full)
p.value <- pchisq(D, lower.tail = FALSE, df = 1)
if (p.value > 0.05) {

reject <- 0
} else {

reject <- 1
}

5. Profile likelihoods (this will change soon when chromploid_optim is fully defined, meanwhile the
process here works)

Point estimations are useful but so are interval estimations. Profile likelihoods allow for better understanding
of the precision, estimability, and identifiability of estimates, given BiChroM model, the sample size, and the
phylogenetic tree.

• Univariate profile likelihoods To understand the behavior of one parameter of a time under BiChroM
model the function you need is Q_unibichrom. Assume that you want to see the profile likelihood of
parameter ρ0. You have to choose a grid (range of values) for which the likelihood could be interesting.
I suggest again that you do this procedure in a cluster. In the example here shown, I do a sequential
way of calculating the profile in this example but more efficiently you could program this in parallel,
sending one optimization per processor, retrieving all the results in 24hrs, so you don’t have to wait for
months. I also suggest using as your starting point x.0 the maximum likelihood value (in log-scale) that
you obtained from optimizing Q_bichrom, optimizations will take shorter if your starting point is good.

logrho0.values <- log(seq(0.02, 0.04, 0.005))
Calculate the likelihood values in a grid 0.02, 0.025, ...,
0.035, 0.04 (in log scale). True value is around 0.36 so
values surrounding the true value are interesting
long <- length(logrho0.values)
x.0 <- log(c(0.12, 0.001, 0.25, 0.002, 0.006, 0.04, 0.02, 1.792317852,

1.57e-14))
value where the optimization algorithm is going to start. A
vector of 9 values for the nuisance parameters in log scale
(everything except rho0)
profile.values <- rep(0, long) # Vector useful to save optimization results
my.options <- list(algorithm = "NLOPT_LN_SBPLX", ftol_rel = 1e-08,

print_level = 1, maxtime = 1.7e+08, maxeval = 1000)
Options used in nloptr, for more information ?nloptr. This
is a subplex algorithm, with high tolerance to fine a very
precise optimum.
for (i in 1:long) {

mle.profilerho0 <- nloptr(x0 = x.0, eval_f = chromploid_nllike,
opts = my.options, phy = mytree, tip.values = mysample,

5

pi.0 = NULL, Q.FUN = Q_unibichrom, Q.ARGS = list(log.theta0 = logrho0.values[i],
size = 50, param.name = "rho0"))

Q.ARGS is a list that has all the arguments included in
Q_unibichrom Type ?Q_unibichrom to see a longer explanation
of each argument
print(mle.profilerho0)
profile.values[i] <- mle.profilerho0$objective

}

plot(exp(logrho0.values), profile.values, xlab = expression(rho_0),
ylab = "Negative log-likelihood", type = "l", lwd = 2)

• Bivariate profile likelihood

Analogous to the example above but using a grid for two parameters and calculating using the function
Q_bibichrom.

BiChroM Linear

THIS IS A BETA VERSION BiChroM linear assumes the same chromosome number changes than BiChroM
but the binary trait change is a linear function of chromosome number. This model can be useful when trying
to associate if polyploidy is associated with the speed of binary trait change. The model is defined via 12
parameters, chromosomal change rates λ0, λ1, µ0, µ1, ρ0, ρ1 are exactly the same as in the simple BiChroM
but binary trait change rates are defined as follows.

• κ0 + iq01: Chromosome number i dependent transition rate from state 0 to state 1.
• κ1 + iq10: Chromosome number i dependent transition rate from state 1 to state 0.

Usage

Substitute Q_bichrom() for Q_bichromlinear() but the arguments for this new function are a vector log.par
of size 12, with parameters λ0, λ1, µ0, µ1, ρ0, ρ1, κ0, κ1, q01, q10, ε0, ε1 in this order and in log-scale, and size
the maximum number of haploid chromosome numbers allowed.

6

	Overview of Chromploid
	Installation
	Negative log likelihood
	BiChroM
	Full inference for BiChroM model

	BiChroM Linear
	Usage

