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Overview of Chromploid

Chromploid is a package that calculates the negative log-likelihood function forrates of chromosome number
or ploidy change models in phylogenetic trees. Currently, chromploid includes four different models of
chromosome number or ploidy evolution: BiChroM, BiChroM linear (beta), PloidEvol, and ChromEvol
M3. Users can choose among these three models but if interested Chromploid package can be extended to
accomodate custom chromosome number or ploidy change models.

About the models included

1. BiChroM: A continuous time Markov chain that links the evolution of chromosome number change to a
binary trait. This model contains 10 parameters that represent rates (change per time).1

2. BiChroM linear: BETA VERSION. A continuous time Markov chain that links the evolution of
chromosome number change to a binary trait where the rates of binary trait change are linear functions
of chromosome number. This model is define via 12 parameters that represent rates of evolution (change
per time).

3. PloidEvol: A continuous time Markov chain that models the evolution of ploidy change. This model
contains 6 parameters that represent rates of ploidy evolution (change per time)2.

4. ChromEvol M3: A continuous time Markov chain that models the evolution of chromosome number
change. The model has 4 parameters that represent rates of chromosome number change. This model
was proposed by Mayrose et al. (2010)3

Installation

You’ll need package devtools. Chromploid is easily installed from github
library("devtools")
devtools::install_github("roszenil/chromploid")
library("chromploid")
library("geiger")
library("nloptr")
#chromploid depends on geiger and nloptr so don't forget to load the packages

Negative log likelihood

The function chromploid_nllike() is possibly the most important and critical of the package. It calculates
the negative log-likelihood of any discrete trait model for chromosome number or ploidy change. Minimizing
negative log-likelihoods allows us to infer model parameters, that is, obtaining maximum likelihood estimates
(MLEs), profile likelihoods, likelihood-confidence intervals, and likelihood ratio tests necessary to answer
biological questions. I will describe how to use this important function after introducing the models coded in
chromploid.

1Zenil-Ferguson, R., Ponciano, J.M. and Burleigh, J.G., 2017. Testing the association of phenotypes with polyploidy: An
example using herbaceous and woody eudicots. Evolution. 71(5):1138-1148.

2Zenil-Ferguson et al. in prep
3Mayrose, I., Barker, M.S. and Otto, S.P., 2010. Probabilistic models of chromosome number evolution and the inference of

polyploidy. Systematic Biology, 59(2), pp.132-144.
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BiChroM

BiChroM -Binary trait associated with chromosome number change model- is a continuous time Markov
chain (CTMC) that allows for estimation and testing of chromosomal change rates correlated with a binary
trait. The model is defined via 10 parameters that represent rates of chromosomal change linked to a value of
a binary trait. BiChroM allows for testing the association of chromosomal change (polyploidy) to phenotypic
change.

Description of parameters in BiChroM:

• λ0, λ1: Rate of gain in one chromosome for taxa with binary trait 0, or binary trait 1 respectively.
• µ0, µ1: Rate of loss in one chromosome for taxa with binary trait 0, or binary trait 1 respectively.
• ρ0, ρ1: Rate of chromosome doubling for taxa with binary trait 0, or binary trait 1 respectively.
• q01, q10: Rate of transition between binary state values, from 0 to 1 or vice versa.
• ε0, ε1: Ancillary parameters of chromosomal changes. Rate of chromosome number changes after size

has been determined.

Full inference for BiChroM model

Inferences using BiChoM model require different functions that allow the calculation of full and partial
likelihoods for the parameters. For example, when the goal is to estimate rates, the full likelihood of 10
parameters should be calculated and optimized, but if the goal of the inference is to assess the uncertainty
about a single parameter then a univariate likelihood should be the calculated.

Each of the functions listed below creates a Q-matrix, a matrix that defines the rates of chromosomal
change linked to the binary trait. The difference among these functions is that each one builds the necessary
mathematics to create a different likelihood function, thus, allowing for different types of inference.

• Q_bichrom(): Creates the Q-matrix (instantaneous probability rate matrix) for the full model, that
allows for calculation of maximum likelihood estimates.

• Q_unichrom(): Creates the marginal Q-matrix necessary for calculation of univariate profile likelihoods.
Used to assess the uncertainty surrounding an individual parameter.

• Q_bibichrom(): Creates the marginal Q-matrix necessary for calculation of bivariate profile likeli-
hoods.Used to assess the uncertainty of two parameters at a time, allows to detect problems with
parameter identifiability.4

• Q_reducedbichrom(): Creates the marginal Q-matrix necessary for calculation of likelihood ratio tests.
• bichrom_dataset(): Transforms a data set of chromosome and binary traits to input in the functions

above

2. BiChroM simulation and estimation

• Choose a set of fixed parameter values. For example (λ0, λ1, µ0, µ1, ρ0, ρ1, q01, q10, ε0, ε1) =
(0.12, 0.001, 0.25, 0.002, 0.036, 0.006, 0.04, 0.02, 1.792317852, 1.57e− 14)

• Calculate BiChroM Q-matrix All parameters in BiChroM are used in log scale because numerical
calculations are easier than in original scale.

log.params <- log(c(0.12, 0.001, 0.25, 0.002, 0.036, 0.006, 0.04,
0.02, 1.792317852, 1.57e-14))

N <- 50
mymatrix <- Q_bichrom(log.theta = log.params, size = N)

• Simulate a tree with 500 taxa and BiChroM values Assuming that the root of the tree has a value 56
means that the root is has 5 haploid chromosomes and its binary type is 1.

4Ponciano, J.M., Burleigh, J.G., Braun, E.L. and Taper, M.L., 2012. Assessing parameter identifiability in phylogenetic
models using data cloning. Systematic biology, p.sys055.
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mytree<- sim.bdtree(b=0.055, stop="taxa", n=500, seed=1)
# Seed was fixed to obtain always the same tree for this tutorial
plot(mytree,type="fan",cex=0.2, no.margin=TRUE)
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set.seed(1) #Seed was fixed to obtain always the same sample for this tutorial
mysample<- chromploid_sim.char(phy=mytree, par=mymatrix,model="discrete", root=56)

• Calculate the likelihood of the tree, assuming that the root has a uniform distribution for chromosome
number and binary state pi.0=NULL (other options for the root are available, like Maddison and Fitzjohn
(2009)). The value of the negative log-likelihood nllike in this example is 943.9293, since we fixed the
random seed, and it is calculated as follows.

nllike <- chromploid_nllike(log.par = log.params, phy = mytree,
tip.values = mysample, pi.0 = NULL, Q.FUN = Q_bichrom, Q.ARGS = list(size = 50))

nllike

## [1] 943.9293

If you have the following error appearing
# Error in tip.values[i, charnum + 1] : incorrect number of
# dimensions

this indicates that you don’t have in the first column the species names and in the second column the sample
for BiChrom. An easy way to fix it is converting your sample into a data frame with first column having taxa
names and second column having the sample needed in BiChroM just as chromploid_sim.char does.
mysample <- data.frame(taxa = rownames(mysample), sample = as.numeric(mysample))
head(mysample)

3. BiChrom optimization Usually you don’t know the values of the parameters and what you need is toto
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find the maximum likelihood estimates of the parameters determined by BiChroM. In this case, you can
optimize (minimize) the negative log-likelihood with any R optimizer given that you have a phylogenetic
tree and a sample of chromosome numbers and binary trait using the function chromploid_nllike.
I have written a shortcut in the optimization using function chromploid_optim but if you think
that the likelihood surface is complicated I suggest using your own customiza optimizer with the
negative-log likelihood function. In addition, loading the package nloptr will help time consuming
calculations because it makes very accurate searches in the parametric space. The cost of using nloptr
is computational time.

# Optimizations take hours to run, I suggest you run this
# routine in a cluster. For a 4700 tip tree starting with a
# x.0 close to the maximum it can take up to 96 hrs.

library(nloptr)
x.0 <- log(c(0.12, 0.001, 0.25, 0.002, 0.036, 0.006, 0.04, 0.02,

1.792317852, 1.57e-14))
# value where the optimization algorithm is going to start. A
# vector of 10 values for the parameters in log scale

model.args <- list(size = 50)
optimization.bichrom <- chromploid_optim(phy.tree = mytree, tip.values = mysample,

model = "bichrom", model.args = model.args, starting.val = x.0,
root.dist = NULL)

print(optimization.bichrom)

The vector optimization.bicrhom contains in the first 10 entries maximum likelihood estimates of parameters
(λ0, λ1, µ0, µ1, ρ0, ρ1, q01, q10, ε0, ε1). Then the negative log likelihood value at the MLE, and finally the status
of the convergence to the optimum inherited from package nloptr. Do not expect good estimates for ε0
and ε1 since by definition these are ancillary parameters that prevent biases for the other 8 that are key
to understand chromosomal change (see Zenil-Ferguson et al. 2017 for details). The eleventh entry in
optimization.bicrhom is the value of the negative log-likelihood at the maximum likelihood estimates and
it is a useful when you want to plot relative profile likelihoods or calculate likelihood ratio tests.

4. Likelihood Ratio Test To calculate the likelihood of the reduced model needed for likelihood ratio
tests you can use the function chromploid_nllike with Q-matrix Q_reducedbichrom or use the
wrapper optimization function chromploid_optim. The example here tests if the rates associated with
chromosome doubling under the different values of the binary trait are equal that is H0 : ρ = ρ0 = ρ1

x.0 <- log(c(0.12, 0.001, 0.25, 0.002, 0.01, 0.04, 0.02, 1.792317852,
1.57e-14))

# Value where the optimization algorithm is going to start. A
# vector of 9 values for the parameters in log scale. The
# value of the hypothesis here is rho=0.010

model.args = list(size = 50, equal.param = c("rho0", "rho1"),
location.par = 5)

# Q.ARGS is a list that has all the arguments included in
# Q_reducedbichrom that are not the parameters size= maximum
# number of haploid chromosome numbers to consider in your
# sample, equal.params=which parameters are equal based on
# the hypothesis H0, location.par is the position in the
# vector where rho value appears

optimization.reducedbichrom <- chromploid_optim(phy.tree = mytree,
tip.values = mysample, model = "reducedbichrom", model.args = model.args,
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starting.val = x.0, root.dist = NULL)

The vector optimization.reducedbicrhom contains in the first 9 entries maximum likelihood estimates of
parameters (λ0, λ1, µ0, µ1, ρ, q01, q10, ε0, ε1). Then the negative log likelihood value at the MLE, and finally
the status of the convergence to the optimum inherited from package nloptr.

print(optimization.reducedbichrom) “‘

Finally the value of the likelihood ratio test for H0 : ρ0 = ρ1 hypothesis is simply D = 2 ×
(reduced bichrom nloglike − full model nloglike) that has a χ2

(1) distribution
neglog.red <- optimization.reducedbichrom[10]
neglog.full <- optimization.bichrom[11]
alpha <- 0.05
D = 2 * (neglog.red - neglog.full)
p.value <- pchisq(D, lower.tail = FALSE, df = 1)
if (p.value > 0.05) {

reject <- 0
} else {

reject <- 1
}

5. Profile likelihoods (this will change soon when chromploid_optim is fully defined, meanwhile the
process here works)

Point estimations are useful but so are interval estimations. Profile likelihoods allow for better understanding
of the precision, estimability, and identifiability of estimates, given BiChroM model, the sample size, and the
phylogenetic tree.

• Univariate profile likelihoods To understand the behavior of one parameter of a time under BiChroM
model the function you need is Q_unibichrom. Assume that you want to see the profile likelihood of
parameter ρ0. You have to choose a grid (range of values) for which the likelihood could be interesting.
I suggest again that you do this procedure in a cluster. In the example here shown, I do a sequential
way of calculating the profile in this example but more efficiently you could program this in parallel,
sending one optimization per processor, retrieving all the results in 24hrs, so you don’t have to wait for
months. I also suggest using as your starting point x.0 the maximum likelihood value (in log-scale) that
you obtained from optimizing Q_bichrom, optimizations will take shorter if your starting point is good.

logrho0.values <- log(seq(0.02, 0.04, 0.005))
# Calculate the likelihood values in a grid 0.02, 0.025, ...,
# 0.035, 0.04 (in log scale). True value is around 0.36 so
# values surrounding the true value are interesting
long <- length(logrho0.values)
x.0 <- log(c(0.12, 0.001, 0.25, 0.002, 0.006, 0.04, 0.02, 1.792317852,

1.57e-14))
# value where the optimization algorithm is going to start. A
# vector of 9 values for the nuisance parameters in log scale
# (everything except rho0)
profile.values <- rep(0, long) # Vector useful to save optimization results
my.options <- list(algorithm = "NLOPT_LN_SBPLX", ftol_rel = 1e-08,

print_level = 1, maxtime = 1.7e+08, maxeval = 1000)
# Options used in nloptr, for more information ?nloptr. This
# is a subplex algorithm, with high tolerance to fine a very
# precise optimum.
for (i in 1:long) {

mle.profilerho0 <- nloptr(x0 = x.0, eval_f = chromploid_nllike,
opts = my.options, phy = mytree, tip.values = mysample,
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pi.0 = NULL, Q.FUN = Q_unibichrom, Q.ARGS = list(log.theta0 = logrho0.values[i],
size = 50, param.name = "rho0"))

# Q.ARGS is a list that has all the arguments included in
# Q_unibichrom Type ?Q_unibichrom to see a longer explanation
# of each argument
print(mle.profilerho0)
profile.values[i] <- mle.profilerho0$objective

}

plot(exp(logrho0.values), profile.values, xlab = expression(rho_0),
ylab = "Negative log-likelihood", type = "l", lwd = 2)

• Bivariate profile likelihood

Analogous to the example above but using a grid for two parameters and calculating using the function
Q_bibichrom.

BiChroM Linear

THIS IS A BETA VERSION BiChroM linear assumes the same chromosome number changes than BiChroM
but the binary trait change is a linear function of chromosome number. This model can be useful when trying
to associate if polyploidy is associated with the speed of binary trait change. The model is defined via 12
parameters, chromosomal change rates λ0, λ1, µ0, µ1, ρ0, ρ1 are exactly the same as in the simple BiChroM
but binary trait change rates are defined as follows.

• κ0 + iq01: Chromosome number i dependent transition rate from state 0 to state 1.
• κ1 + iq10: Chromosome number i dependent transition rate from state 1 to state 0.

Usage

Substitute Q_bichrom() for Q_bichromlinear() but the arguments for this new function are a vector log.par
of size 12, with parameters λ0, λ1, µ0, µ1, ρ0, ρ1, κ0, κ1, q01, q10, ε0, ε1 in this order and in log-scale, and size
the maximum number of haploid chromosome numbers allowed.
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